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ABSTRACT

The Ball and Beam is a system commonly used tosxpndergraduate students to controller designirdmertant
step of this design process is to develop a mattiemhanodel to describe the behavior of the syt&hmere are
several possible methods for deriving the equatimaotion of a dynamical system. These includedrangian
methods and Newtonian mechanics. Many authorfailequately derive the model for the Ball-andiBegstem
because they obviate several acceleration ternithough these terms do not affect the linear moithely are
important for nonlinear simulations. When the maslelerived from Euler-Lagrange methods, thesmsexppear
naturally. In this paper it is demonstrated tha&t ¢quations of motion obtained from both methadsdentical.
From the equation of motion, nonlinear state-spaggations are developed. The nonlinear equaticashan
linearized about the equilibrium point and a trangfinction suitable for a linear controller desigmbtained.

Keywords: Ball and Beam System, Dynamical Systems, Langrangiechanics, Newtonian Mechanics, System
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1. INTRODUCTION

System modeling is an extremely important parhefdontrol system design process. An accurate nuddel
dynamical system allows us to better understangliysical system and facilitates the analysis agigth of
controllers. The behavior of dynamical systemsdaseribed by differential equations. One of th&t fiteps in
the design process is to derive these equations ffysics laws. Seveal methods are available whewidg
the dynamicequations. For mechanical systems, two common appes are Lagrangian Mechanics and
Newtonian Mechanics. While both of these methodklyidentical results for suitable systems, ontheftwo
methods may be significantly simpler, dependingh@nnature of the system. Many authors have detived
equations for the Ball and Beam system using ttgrdrajian method (Hauser et al. 1992), (Hirsch, 1989
Others have derived these equations using Newten&rhanics, but have failed to consider the efiéthe
rotating coordinate system, leading to missing seimthe equations (Virseda, 2004), (Hamed, 2018
purpose of this paper is to provide a detailedvd¢inn of the Ball and Beam dynamical equationsgisi
Newtonian mechanics and demonstrate that theylandical to the results obtained by the Lagrangiathod.
Nonlinear and linearized state-variable modelgHerBall and Beam system are derived from the émpsbf
motion.

2. MODEL FROM LAGRANGIAN MECHANICS

The Langrange method is an energy based approadariging the equations of motion of a dynamigattem.
This is convenient since it does not require treeafsvectors. For this reason, many complicatetesys are
often analyzed using this method. We will now derilie equations of motions for the Ball and Beaimgus
this method. Consider the Ball and Beam systenigarg 1 (Hirsch, 1989).
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Figure 1: Ball and Beam System

The ball rolls on the beam without slipping undeg tiction of the force of gravity. The beam igtlifrom an
external torque to control the position of the tmailthe beam. We first define a set of generalzmatdinates
which fully describe the system. The generalizentdimates are defined as

=[5

wherep(t) is the position of the ball on the beam &) is the angle of the beam. The Lagrangian of tegyss
a quantity which is defined as (D'Souza, 1984)

L=K-U
. . . . . g . (2)
whereK is the kinetic energy and is the potential energy of the system. To fad#itdoe evaluation df andU,
we define the Cartesian coordinaxé§ and y(t)as shown in Figure 2.

1 {L'(t) [

|—)I

Figure 2: Cartesian Coordinates and Generalized Cadinates

The kinetic energy of the beam is
1 .
- _ 2
Ky = 5J0

3)
whered is the moment of inertia of the beam. The kinetiergy of the ball is

1 .2 1,
K, = E]bgb + > MV

(4)
whereg,, is the angular velocity of the ball awngdis the linear velocity of the ball. The quan#ity can be expressed
in terms of the generalized coordinates as

6, = 2
b r

()
wherer is the radius of the ball. We can also exprgss terms of the generalized coordinates.
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va — xZ_l_ yZ

(6)
X = pcosf
, W)
X = pcosf — pOsind
- . . (8)
1% = p?cos?0 — 2ppbcoshsinh + p?6%sin?6
)
y = psiné
(10)
y = psind + pOcosh
(11)
y? = p2sin?6 + 2pplcoshsind + p?6%cos?6
12)
Substituting (9) and (12) into (6) yields
v,2 = p? + p2o?
(13)

Substituting (5) and (13) into (4), we obtain theression for the kinetic energy of the ball inmerof the
generalized coordinates.

_ Ll -2 1 242
K, = 2(T2+m)p + zmp 0
(14)
The potential energy if the system is given by,
U = mgpsinf
(15)
Substituting (3), (14), and (15) into (2), reswtsthe Langrangian for this system
— LT -2 1 2 )2 ;
L= > (rz +m>p + > (mp* + ])0° — mgpsind
(16)
The first Lagrange equation is given by
d <6L> oL
dt\ap/ op
17)
We now proceed to compute this equation step-ky-ste
oL (Jp .
- (F+m)s
(18)
d 0L\ _ (]p .
dt (a_p> = (G +m)p
(19)
oL mpt? inf
ap =mp mgsin
(20)

Substituting (18)-(20) into (17) we derive the fiegjuation of motion of the ball and beam system
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(7{—1; + m)ﬁ + mgsin — mp6? =0

(21)
The second Lagrange equation is given by
d <6L> dL _
at\ag) o0 "
(22)
Wherer is the external torque applied to the beam. Wivelghis equation using a similar approach.
oL = (mp? +))é
a6~ mPmt]
(23)
d (oL = 2mppl + (mp? +))6
1z (ag) = 2mwed + (me? 4
(24)
aL p
30 mgpcos
(25)
Substituting (24) and (25) into (22) we obtain sleeond equation of motion for the Ball and Beam
(mp? + )6 + 2mppé + mgpcosd = 1
(26)

That is, (21) and (26) are the equations of mdiborthe Ball and Beam system.

3. MODELLING FROM NEWTONIAN MECHANICS

We will now proceed to derive the equations of mofior the Ball and Beam system using Newtonianhaeics.
We define the x-axis to be parallel to the beamc&ithis axis rotates with time, we must considher time
derivatives of the unit vectors when calculatingpe#ies and accelerations. The absolute acceterati a body is
given by (Merian & Kraige, 2002)

Qg =0 X T+ 0 X(WXT)+20 X Vypo + Apgp
(27)

whereo is the angular velocity of the rotating axiss the position vectox;e is the velocity relative to the rotating
axis, ande is the acceleration of the body relative to thating coordinate system. Consider the set ofdinate
axes rotating with an angular velocitywfshown in Figure 3.

Figure 3: Rotating Axes
Using the same notation used in Figure 1, we céinalthe necessary vectors
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r=npi

(28)
w = 0k
(29)
Vyper = Pi
(30)
Qe = Pl
(31)
We now proceed to perform the vector products rebémlealculate the absolute acceleration (27).
& X r= 6k xpi=rpbj
. (32)
wXr= 0k x pi= pbj
(33)
wX(wxr) =0k X pfj = —pb?i
(34)
20 X Vyy = 20k X pi = 20pj
(35)
Substituting (31) — (35) into (27) we obtain theeleration relative to the rotating axes
a, = pbj— po%i+ 20pj+ pi
(36)
a, = (p—pb?)i+ (pb + 20p)j
(37)

% Q(t) \

\

Figure 4: Free Body Diagram of the Rotating Ball

Consider the free body diagram shown in Figureuni@ing torques about the axis of rotation of thieyialds

Jwbp = F -1
(38)
Where Jis the moment of inertia of the ball about itsteenThe angle of rotation of the ball about itatee6, is
given by

(39)
wherer is the radius of the ball. Substituting (39) i38) and solving foF;, yields
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(430)

We now proceed to sum forces acting on the baliéndirection. Using thecomponent of the relative acceleration
vector (37) yields

F. —mgsind = m(p — p6?)

(31)
Substituting (40) into (41), we arrive at our fiegfuation of motion

Ip N . .
(7”_2 + m)p + mgsind — mph? =0
(42)
which coincides with (21).

To compute the second equation of motion, we mitsit ompute the normal force N as shown in Figlre
Summing forces acting on the ball in fheirection yields

N = m(pé + 2915) + mgcos6

(43)
Consider the free body diagram of the beam shoviigare 5.
Figure 5: Free Body Diagram of the Beam
Summing torques acting on the beam vyields
T—Np=]0
(44)

wherert is the external applied torque and J is the ia@tithe beam. Substituting (43) into (44) yields second
equation of motion

(mp? + )6 + 2mppd + mgpcosd = 1
(45)

which coincides with (26) as expected.

The termmp@2in (42) and the ter@mppé in (45) would be missing if we do not take intmsigleration the effect
of the rotating axis of the beam. These termsnapertant for nonlinear simulations of the system.
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4. NONLINEAR AND LINEAR STATE-VARIABLE REPRESENTATION

The equations of motion we derived for the Ball &&hm system can be written in state-variable sgmation.
We must first define a state vector as follows.

X1 (t)] p(t)

xz @] _ |p@®

(t) 9 (t)

ENGIINT © )

This state vector is composed of the minuimum §e&tdables required to determine the future respoof the
system given the input and the current state. That@ons of motion can then be written in termghef state
variables as

X, 1
% m(x,x4% — gsinxs)
=" = ]3”” = f(x,7)
%3 o
X4 —2Mx1XyX4 — MGX1€0SX3 + T
(mx,? +]) 2

(47)

We also define an operating point correspondirgydonstant ball positigy, and zero velocity. The corresponding
angle and angular velocity of the beam are also. ZEhe operating state is then given by

Do
X0 =1
0

(48)

We also define the operating input required to ma@nthis operating point, the bancing torque otgdifrom
equatingf (x,7) in (47) to zero and evaluating at the operatingtpo

U =Mygpo 49)
49

This is simply the torque required to maintainiblad stationary at positiopy. The Jacobian of the right hand side
of (47) with respect to the state vectojields

0 1 0 0
mx2 —mgcosx;  2mx;x,
of o +m o +m Jo. +m
—(x,7) = T2 T2 rZ
0x 0 0 0 1
afs —2mx,X, MGgx,Sinx; —2mx;X,
| 0x; mxf+]  mxf+]  mxP+4]
(50)
where
f, (—2mx,x, — mgcosxz)(mx? +]) — (—2mx;x,X, — Mgx,c05X3 + 1)
0x; (mx? +J)2
(51)
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Evaluatating at the operating point yields fmatrix of the state-variable representation

—mg
0 7 0
_ af _ = tm
A—a(xo,‘[o)— O T 0 1
—mg
lmpg +] 0 OJ
(52)
The Jacobian with respect to the inpytelds
[0
af
— = 0
~—(@,1) 0
mx? + ]
(53)
Evaluating at the operating point yields Bienatrix of the state variable representation
[0
B = 2L (o) | 0 |
= — (X0, T =
ot T 1|
lmpg +]J
(54)

Defining the output of the system to be the balsipon yields theC matrix of the state variable
representation

C=1[1 0 0 0]
(55)

Using these matrices, the system can now be wiittarstate-space representation of the form

x(t) = Ax(t) + Bu(t)
(56)

y(©) = Cx(¢)
(57)
Substituting the parameters of the Quanser Conguliall and Beam system (Quanser, 2014)
m=0.11kg
r =0.015m

m
g= 9.815—2
] =19 x 1073 kg - m?
Jp =999 x 107° kg - m?
Po=0
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yields the state variable representation

0 1 0 0 0
#(t) = 8 8 ‘07 (1)x(t)+ 8 (t)
568 0 0 0 52.6
(59)
y@®=1[1 0 0 0]x(®)
(60)

From this state space representation, the systarhecanalyzed and a controller may be designed.

5. CONCLUSION

We have derived the dynamical equations for thé &al Beam system using both Newtonian and Lagaangi
mechanics. It has been demonstrated that both dethmvide identical results. Some of the termshiese
equations are often missed when using Newtoniarhitgcs to derive the system equations. This igaltige fact
that it is necessary to take into considerationetfiect of the rotating axis of the beam. The migdierms arise
from the vector products carried out when calcnathe absolute acceleration of the ball. Thesagéntroduce
additional forces in the equations such as cen#if@nd Coriolis forces. The energy-based Lagemgnethod
handles these terms naturally easier. We suggass the Lagrangian method in an undergraduate-sgpaice
control systems course. Doing so may take fromto@o 50 minutes classes to discuss thorougbligcussing
this method will also provide students with a fravoek for analyzing other mechanical systems su¢hesverted
pendulum and the double inverted pendulum. Itheen the authors’ experience that the Lagrangiaghadds
easier to follow and to understand by students thamNewtonian method.
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