

Grid cells and the entorhinal map of space

Edvard I. Moser
Kavli Institute for Systems Neuroscience,
Centre for Neural Computation,
NTNU, Trondheim

From psychology to neurophysiology - and back

Tolman writing to Hebb (1958):

"I certainly was an anti-physiologist at that time and am glad to be considered as one <u>then</u>. Today, however, I believe that this (physiologizing) is where the great new break-throughs are coming.."

Courtesy of Steve Glickman

T. Sagvolden, P.Andersen, R.G.M. Morris, J.O'Keefe, C.A. Barnes, B.L. McNaughton 1959 -:

Significant progress in deciphering cortical computation was made at the 'low end' of the cortex, near the sensory receptors

D. H. Hubel and T. N. Wiesel (courtesy M. Reyes/T.N. Wiesel)

Trondheim 1996-

Ailin Moser

Where and how was the place signal generated?

CA1 cells continued to express place fields after lesion of the intrinsic hippocampal pathway, suggesting that the source of the place signal is external

Brun et al. (2002). Science 296:2243-2246

Best candidate: the entorhinal cortex

We then recorded from dorsal medial entorhinal cortex, which provides the strongest cortical input to the dorsal hippocampus where the place cells were found

Entorhinal cortex of a rat brain (seen from behind):

Fyhn et al. (2004). Science 305:1258-1264

M. Fyhn

S. Molden

M.P. Witter

Entorhinal cells had multiple fields and the fields exhibited a regular pattern. But what was the pattern?

Entorhinal cells had spatial fields with a periodic

hexagonal structure

The fields formed a grid that covered the entire space available to the animal.

We called them grid cells

Hafting et al. (2005). *Nature* 436:801-806

Stensola et al. *Nature*, 492, 72-78 (2012)

M. Fyhn,

S. Molden

220 cm wide box

Grid cells have at least three dimensions of variation

1. Phase

2. Scale

3. Orientation

Phase, scale and orientation may vary between grid cells. How are these variations <u>organized in anatomical space?</u>

Grid phase (x, y-locations) is distributed: All phases are represented within a small cell clusters

Hafting et al. (2005). *Nature* 436:801-806 (cell from Stensola et al 2012)

Grid phase (x, y-locations) is distributed: All phases are represented within a small cell clusters

Hafting et al. (2005). *Nature* 436:801-806 (cell from Stensola et al 2012)

Grid phase (x, y-locations) is distributed: All phases are represented within a small cell clusters

Hafting et al. (2005). *Nature* 436:801-806 (cell from Stensola et al 2012)

Grid phase (x, y-locations) is distributed: All phases are represented within a small cell clusters

... similar to the salt-and-pepper organization of many other cortical representations (orientation selectivity in rodents, odours, place cells)

Grid scale (spacing) follows a dorso-ventral topograhical organization

But within animals, the steps in grid spacing are discrete, suggesting that grid cells are organized in modules

Tor & Hanne Stensola

Trygve Solstad Kristian Frøland

The average scale ratio of successive modules is constant, i.e. grid scale increases as in a geometric progression

Although the set point is different for different animals, modules scale up, on average, by a factor of ~1.42 (sqrt 2).

Stensola et al. *Nature*, 492, 72-78 (2012)

A geometric progression may be the optimal way to represent the environment at high resolution with a minimum number of cells (Mathis et al., 2012; Wei et al. 2013).

<u>Within modules</u>, the grid map is <u>rigid</u> and <u>universal</u>: Scale, orientation and phase relationships are <u>preserved</u>

Grid maps: Scale, orientation and phase relationships are preserved across environments

Grid-like cells have since been reported in bats, monkeys and humans, suggesting they originated early in mammalian evolution

To be useful for navigation, grid cells cannot only respond to self-motion cues. They must also anchor to external reference frames. How?

Grid orientation is remarkably similar across animals. The same few orientation solutions are expressed in different animals....

What are then the factors that determine orientation?

Tor & Hanne Stensola

But the alignment is not perfect. After normalization to the nearest wall, grid orientations peak not at 0° but at $\pm 7.5^{\circ}$

Orientations shy away from both 0° and ±15°!

Stensola et al. (2015). *Nature*, in press

What is special about 7.5°?

7.5° minimizes symmetries with the axes of the environment

Helpful to disambiguate geometrically similar segments of the environment?

What is the mechanism behind the 7.5° offset?

The rotation differed between the 3 grid axes...

Elliptification and axis rotation may thus be common end products of <u>shearing</u> forces from the borders of the environment

Stensola et al. (2015). *Nature*, in press

$$f(x,y) = \begin{bmatrix} x + \gamma_1 y \\ y + \gamma_2 x \end{bmatrix}$$

elliptification non-coaxial rotation

Minimizing ellipticity along one wall axis (by analytically reversing the shearing) completely removed the bimodality in the offset distribution, for all axes...

... implying that grid patterns are anchored - and distorted - in an axisdependent manner by shear forces from specific boundaries of the environment

Stensola et al. (2015). *Nature*, in press

Shear forces along the walls cause elliptification and axis-dependent grid rotation

AXIS ORTHOGONAL TO SHEAR FORCES:

The data point to shearing as the mechanism for grid distorition and rotation and imply that local boundaries exert distance-dependent effects on the grid

2. Fine-scala functional anatomy

To understand how grid patterns are generated, and how grid cells interact with other cell types, we need to determine how the network is wired together.

But tetrode recordings are not sufficient for this purpose.

Determining the fine-scale functional topography of the entorhinal space network:

Optical imaging with a fluorescent calcium indicator would improve the spatial resolution beyond that of tetrodes...

But access to the medial entorhinal cortex is a challenge..

Albert Tsao **Tobias Bonhoeffer**

Possible solution: Accessing the entorhinal surface through a prism

Tsao et al., unpublished; See Heys et al, Neuron, Dec 2014, for a similar approach

Imaging grid cells of GCaMP6-injected mice in a linear virtual environment

Hundreds of entorhinal cells can be imaged at cell or sub-cell spatial resolution in GcAMP6-expressing cells during virtual navigation

Grid cells can be identified as cells with periodic firing fields

Tsao et al., unpublished

Grid cells cluster more than expected by chance:

Grid clusters belong preferentially to the same grid module:

Adjacent grid cells have grid phases that are more similar than than expected by chance:

Tsao et al., unpublished

Most (all) network models for grid cells involve continuous attractors...

...where

- localized firing may be generated by mutual excitation between cells with similar grid phase
- and <u>such activity is</u>
 <u>translated</u> across the
 sheet in accordance with
 the animal's movement in
 the environment (e.g. as
 expressed in speed cells)

BRAIN SURFACE:
Grid cells arranged
according to grid
phase (xy positions).
Cells with similar
fields mutually excite
each other. (with an
inhibitory surround).

Origin of hexagonal structure

Fuhs & Touretzky, 2006; McNaughton et al. 2006; Burak & Fiete. 2009: Couev et al.. 2013

Competition between self-exciting blobs with inhibitory surrounds may cause the network to self-organize into a hexagonal pattern, in which distances between blobs are maximized.

Similar self-organization may occur with •••••

purely inhibitory surrounds (inverted Lincoln hat):

Self-organization of grid network in a continuous attractor model

Roudi group: Couey et al., 2013; Bonnevie et al 2013

Y. Roudi

Then, when the activity bumps are translated across the network in accordance with the animal's movement, using speed and direction signals, it will yield grid fields in individual cells.

> HALF A CENTURY HAS PASSED AND TOLMAN'S MAP HAS BEEN 'PHYSIOLOGIZED'

"Today, however, I believe that this (physiologizing) is where the great new breakthroughs are coming.."

E.C. Tolman (1958)

SUMMARY

- Grid cells define hexagonal arrays that tessellate local space.
- Grid modules are organized in anatomical space.
- Grid cells cluster discontinuous modules.
- The intrinsic functional organization of a grid module is preserved across environments.
- Fine-scale grid-cell architecture can be investigated with 2-photon calcium imaging.
- Grid cells may be generated by attractor networks.

1μm

Abrikosov, 1957

Reverse shearing

Courtesy Pete Lawrance

SUMMARY

- Grid cells define hexagonal arrays that tessellate local space.
- Grid modules are organized in anatomical space.
- Grid cells cluster discontinuous modules.
 - The intrinsic functional organization of a grid module is preserved across environments.
 - Fine-scale grid-cell architecture can be investigated with 2photon calcium imaging.
 - Grid cells may be generated by attractor networks.

