
Chapter 1

Parallel Programming Models

and Paradigms

Lu��s Moura e Silvay and Rajkumar Buyyaz

y Departamento de Engenharia Inform�atica

Universidade de Coimbra, Polo II

3030 Coimbra - Portugal

z School of Computer Science and Software Engineering

Monash University

Melbourne, Australia

Email: luis@dei.uc.pt, rajkumar@ieee.org

1.1 Introduction

In the 1980s it was believed computer performance was best improved by creating
faster and more e�cient processors. This idea was challenged by parallel processing,
which in essence means linking together two or more computers to jointly solve a
computational problem. Since the early 1990s there has been an increasing trend
to move away from expensive and specialized proprietary parallel supercomputers
(vector-supercomputers and massively parallel processors) towards networks of com-
puters (PCs/Workstations/SMPs). Among the driving forces that have enabled this
transition has been the rapid improvement in the availability of commodity high-
performance components for PCs/workstations and networks. These technologies
are making a network/cluster of computers an appealing vehicle for cost-e�ective
parallel processing and this is consequently leading to low-cost commodity super-
computing.

Scalable computing clusters, ranging from a cluster of (homogeneous or heteroge-
neous) PCs or workstations, to SMPs, are rapidly becoming the standard platforms
for high-performance and large-scale computing. The main attractiveness of such
systems is that they are built using a�ordable, low-cost, commodity hardware (such

4



Section 1.2 A Cluster Computer and its Architecture 5

as Pentium PCs), fast LAN such as Myrinet, and standard software components
such as UNIX, MPI, and PVM parallel programming environments. These systems
are scalable, i.e., they can be tuned to available budget and computational needs
and allow e�cient execution of both demanding sequential and parallel applications.
Some examples of such systems are Berkeley NOW, HPVM, Beowulf, Solaris-MC,
which have been discussed in Volume 1 of this book [8].

Clusters use intelligent mechanisms for dynamic and network-wide resource shar-
ing, which respond to resource requirements and availability. These mechanisms
support scalability of cluster performance and allow a 
exible use of workstations,
since the cluster or network-wide available resources are expected to be larger than
the available resources at any one node/workstation of the cluster. These intelligent
mechanisms also allow clusters to support multiuser, time-sharing parallel execu-
tion environments, where it is necessary to share resources and at the same time
distribute the workload dynamically to utilize the global resources e�ciently [4].

The idea of exploiting this signi�cant computational capability available in net-
works of workstations (NOWs) has gained an enthusiastic acceptance within the
high-performance computing community, and the current tendency favors this sort
of commodity supercomputing. This is mainly motivated by the fact that most
of the scienti�c community has the desire to minimize economic risk and rely on
consumer based o�-the-shelf technology. Cluster computing has been recognized as
the wave of the future to solve large scienti�c and commercial problems.

We have presented some of the main motivations for the widespread use of
clusters in high-performance parallel computing. In the next section, we discuss
a generic architecture of a cluster computer and the rest of the chapter focuses
on levels of parallelism, programming environments or models, possible strategies
for writing parallel programs, and the two main approaches to parallelism (im-
plicit and explicit). Within these two approaches, we brie
y summarize the whole
spectrum of choices to exploit parallel processing: through the use of parallelizing
compilers, parallel languages, message-passing libraries, distributed shared mem-
ory, object-oriented programming, and programming skeletons. However, the main
focus of the chapter is about the identi�cation and description of the main parallel
programming paradigms that are found in existing applications. At the end of the
chapter, we present some examples of parallel libraries, tools, and environments that
provide higher-level support for parallel programming through the use of skeletons
or templates. This approach presents some interesting advantages, for example,
the reuse of code, higher 
exibility, and the increased productivity of the parallel
program developer.

1.2 A Cluster Computer and its Architecture

A cluster is a type of parallel or distributed processing system, which consists of
a collection of interconnected stand-alone computers working together as a single,
integrated computing resource.

A computer node can be a single or multiprocessor system (PCs, workstations,



6 Parallel Programming Models and Paradigms Chapter 1

or SMPs) with memory, I/O facilities, and an operating system. A cluster generally
refers to two or more computers (nodes) connected together. The nodes can exist
in a single cabinet or be physically separated and connected via a LAN. An inter-
connected (LAN-based) cluster of computers can appear as a single system to users
and applications. Such a system can provide a cost-e�ective way to gain features
and bene�ts (fast and reliable services) that have historically been found only on
more expensive proprietary shared memory systems. The typical architecture of a
cluster is shown in Figure 1.1.

Parallel Applications

Comm. S/W Comm. S/W

PC/Workstation

Comm. S/W

PC/Workstation

Comm. S/W

PC/Workstation

Comm. S/W

PC/Workstation

(Single System Image and Availability Infrastructure)

Cluster Middleware

PC/Workstation

Net. Interface HW Net. Interface HW Net. Interface HWNet. Interface HW Net. Interface HW

High Speed Network/Switch

Sequential Applications Parallel Programming Environments

Figure 1.1 Cluster computer architecture.

The following are some prominent components of cluster computers:

� Multiple High Performance Computers (PCs, Workstations, or SMPs)

� State-of-the-art Operating Systems (Layered or Micro-kernel based)

� High Performance Networks/Switches (such as Gigabit Ethernet and Myrinet)

� Network Interface Cards (NICs)

� Fast Communication Protocols and Services (such as Active and Fast Mes-
sages)

� Cluster Middleware (Single System Image (SSI) and System Availability In-
frastructure)

{ Hardware (such as Digital (DEC) Memory Channel, hardware DSM, and
SMP techniques)

{ Operating System Kernel or Gluing Layer (such as Solaris MC and GLU-
nix)



Section 1.3 Parallel Applications and Their Development 7

{ Applications and Subsystems

� Applications (such as systemmanagement tools and electronic forms)

� Run-time Systems (such as software DSM and parallel �le-system)

� Resource Management and Scheduling software (such as LSF (Load
Sharing Facility) and CODINE (COmputing in DIstributed Net-
worked Environments))

� Parallel Programming Environments and Tools (such as compilers, PVM (Par-
allel Virtual Machine), and MPI (Message Passing Interface))

� Applications

{ Sequential

{ Parallel or Distributed

The network interface hardware acts as a communication processor and is re-
sponsible for transmitting and receiving packets of data between cluster nodes via
a network/switch.

Communication software o�ers a means of fast and reliable data communication
among cluster nodes and to the outside world. Often, clusters with a special net-
work/switch like Myrinet use communication protocols such as active messages for
fast communication among its nodes. They potentially bypass the operating system
and thus remove the critical communication overheads providing direct user-level
access to the network interface.

The cluster nodes can work collectively as an integrated computing resource, or
they can operate as individual computers. The cluster middleware is responsible for
o�ering an illusion of a uni�ed system image (single system image) and availability
out of a collection on independent but interconnected computers.

Programming environments can o�er portable, e�cient, and easy-to-use tools
for development of applications. They include message passing libraries, debuggers,
and pro�lers. It should not be forgotten that clusters could be used for the execution
of sequential or parallel applications.

1.3 Parallel Applications and Their Development

The class of applications that a cluster can typically cope with would be considered
demanding sequential applications and grand challenge/supercomputing applica-
tions. Grand Challenge Applications (GCAs) are fundamental problems in science
and engineering with broad economic and scienti�c impact [18]. They are gener-
ally considered intractable without the use of state-of-the-art parallel computers.
The scale of their resource requirements, such as processing time, memory, and
communication needs distinguishes GCAs.

A typical example of a grand challenge problem is the simulation of some phe-
nomena that cannot be measured through experiments. GCAs include massive



8 Parallel Programming Models and Paradigms Chapter 1

crystallographic and microtomographic structural problems, protein dynamics and
biocatalysis, relativistic quantum chemistry of actinides, virtual materials design
and processing, global climate modeling, and discrete event simulation.

Although the technology of clusters is currently being deployed, the develop-
ment of parallel applications is really a complex task. First of all, it is largely
dependent on the availability of adequate software tools and environments. Second,
parallel software developers must contend with problems not encountered during
sequential programming, namely: non-determinism, communication, synchroniza-
tion, data partitioning and distribution, load-balancing, fault-tolerance, heterogene-
ity, shared or distributed memory, deadlocks, and race conditions. All these issues
present some new important challenges.

Currently, only some specialized programmers have the knowledge to use parallel
and distributed systems for executing production codes. This programming tech-
nology is still somehow distant from the average sequential programmer, who does
not feel very enthusiastic about moving into a di�erent programming style with
increased di�culties, though they are aware of the potential performance gains.
Parallel computing can only be widely successful if parallel software is able to ac-
complish some expectations of the users, such as:

� provide architecture/processor type transparency;

� provide network/communication transparency;

� be easy-to-use and reliable;

� provide support for fault-tolerance;

� accommodate heterogeneity;

� assure portability;

� provide support for traditional high-level languages;

� be capable of delivering increased performance;

� and �nally, the holy-grail is to provide parallelism transparency.

This last expectation is still at least one decade away, but most of the others can
be achieved today. The internal details of the underlying architecture should be
hidden from the user and the programming environment should provide high-level
support for parallelism. Otherwise, if the programming interface is di�cult to use, it
makes the writing of parallel applications highly unproductive and painful for most
programmers. There are basically two main approaches for parallel programming:

1. the �rst one is based on implicit parallelism. This approach has been followed
by parallel languages and parallelizing compilers. The user does not specify,
and thus cannot control, the scheduling of calculations and/or the placement
of data;

2. the second one relies on explicit parallelism. In this approach, the program-
mer is responsible for most of the parallelization e�ort such as task decompo-
sition, mapping tasks to processors, and the communication structure. This



Section 1.3 Parallel Applications and Their Development 9

approach is based on the assumption that the user is often the best judge of
how parallelism can be exploited for a particular application.

It is also observed that the use of explicit parallelism will obtain a better e�-
ciency than parallel languages or compilers that use implicit parallelism.

1.3.1 Strategies for Developing Parallel Applications

Undoubtedly, the main software issue is to decide between either porting existing
sequential applications or developing new parallel applications from scratch. There
are three strategies for creating parallel applications, as shown in Figure 1.2.

Existing
Source
Code

Minor
Code
Modification

Automatic
Parallelization

Parallel
Application

Existing
Source
Code

Major
Recoding

Compiler
Assisted
Parallelization

Parallel
Application

Existing
Source
Code

Parallel
ApplicationRelink

Identify and
Replace
Subroutines

Develop
Parallel
Library

Strategy 1: Automatic Parallelization

Strategy 2: Parallel Libraries

Strategy 3: Major Recoding

Figure 1.2 Porting strategies for parallel applications.

The �rst strategy is based on automatic parallelization, the second is based on
the use of parallel libraries, while the third strategy|major recoding|resembles
from-scratch application development.

The goal of automatic parallelization is to relieve the programmer from the
parallelizing tasks. Such a compiler would accept dusty-deck codes and produce
e�cient parallel object code without any (or, at least, very little) additional work
by the programmer. However, this is still very hard to achieve and is well beyond



10 Parallel Programming Models and Paradigms Chapter 1

the reach of current compiler technology.
Another possible approach for porting parallel code is the use of parallel libraries.

This approach has been more successful than the previous one. The basic idea is to
encapsulate some of the parallel code that is common to several applications into a
parallel library that can be implemented in a very e�cient way. Such a library can
then be reused by several codes. Parallel libraries can take two forms:

1. they encapsulate the control structure of a class of applications;

2. they provide a parallel implementation of some mathematical routines that
are heavily used in the kernel of some production codes.

The third strategy, which involves writing a parallel application from the very
beginning, gives more freedom to the programmer who can choose the language
and the programming model. However, it may make the task very di�cult since
little of the code can be reused. Compiler assistance techniques can be of great
help, although with a limited applicability. Usually the tasks that can be e�ectively
provided by a compiler are data distribution and placement.

1.4 Code Granularity and Levels of Parallelism

In modern computers, parallelism appears at various levels both in hardware and
software: signal, circuit, component, and system levels. That is, at the very low-
est level, signals travel in parallel along parallel data paths. At a slightly higher
level, multiple functional units operate in parallel for faster performance, popularly
known as instruction level parallelism. For instance, a PC processor such as Pen-
tium Pro has the capability to process three instructions simultaneously. Many
computers overlap CPU and I/O activities; for instance, a disk access for one user
while executing instruction of another user. Some computers use a memory inter-
leaving technique { several banks of memory can be accessed in parallel for faster
accesses to memory. At a still higher level, SMP systems have multiple CPUs that
work in parallel. At an even higher level of parallelism, one can connect several
computers together and make them work as a single machine, popularly known as
cluster computing.

The �rst two levels (signal and circuit level) of parallelism is performed by a
hardware implicitly technique called hardware parallelism. The remaining two levels
(component and system) of parallelism is mostly expressed implicitly/explicitly by
using various software techniques, popularly known as software parallelism.

Levels of parallelism can also be based on the lumps of code (grain size) that can
be a potential candidate for parallelism. Table 1.1 lists categories of code granular-
ity for parallelism. All approaches of creating parallelism based on code granularity
have a common goal to boost processor e�ciency by hiding latency of a lengthy
operation such as a memory/disk access. To conceal latency, there must be another
activity ready to run whenever a lengthy operation occurs. The idea is to exe-
cute concurrently two or more single-threaded applications, such as compiling, text



Section 1.5 Parallel Programming Models and Tools 11

formatting, database searching, and device simulation, or parallelized applications
having multiple tasks simultaneously.

Table 1.1 Code Granularity and Parallelism

Grain Size Code Item Parallelised by

Very Fine Instruction Processor
Fine Loop/Instruction block Compiler
Medium Standard One Page Function Programmer
Large Program-Separate heavyweight process Programmer

Parallelism in an application can be detected at several levels. They are:

� very-�ne grain (multiple instruction issue)

� �ne-grain (data-level)

� medium-grain (or control-level)

� large-grain (or task-level)

The di�erent levels of parallelism are depicted in Figure 1.3. Among the four
levels of parallelism, the �rst two levels are supported transparently either by the
hardware or parallelizing compilers. The programmer mostly handles the last two
levels of parallelism. The three important models used in developing applications
are shared-memory model, distributed memory model (message passing model), and
distributed-shared memory model. These models are discussed in Chapter 2.

1.5 Parallel Programming Models and Tools

This section presents a brief overview on the area of parallel programming and de-
scribes the main approaches and models, including parallelizing compilers, parallel
languages, message-passing, virtual shared memory, object-oriented programming,
and programming skeletons.

1.5.1 Parallelizing Compilers

There has been some research in parallelizing compilers and parallel languages but
their functionality is still very limited. Parallelizing compilers are still limited to
applications that exhibit regular parallelism, such as computations in loops. Par-
allelizing/vectorizing compilers have proven to be relatively successful for some ap-
plications on shared-memory multiprocessors and vector processors with shared
memory, but are largely unproven for distributed-memory machines. The di�cul-
ties are due to the non uniform access time of memory in the latter systems. The
currently existing compiler technology for automatic parallelization is thus limited
in scope and only rarely provides adequate speedup.



12 Parallel Programming Models and Paradigms Chapter 1

Messages Messages

a[0]=...
b[0]=...

Large grain
(Task level)

Fine grain
(data level)

Task i-1 Task i

+ x
Very fine grain
(multiple issue)

a[1]=...
b[1]=...

a[2]=...
b[2]=...

{
...
...
}

{
...
...
}

{
...
...
}

func2() func3()

..... ..... Task i+1

/

func1()

Medium grain
(control level)

Figure 1.3 Detecting parallelism.

1.5.2 Parallel Languages

Some parallel languages, like SISAL [11] and PCN [13] have found little favor with
application programmers. This is because users are not willing to learn a completely
new language for parallel programming. They really would prefer to use their
traditional high-level languages (like C and Fortran) and try to recycle their already
available sequential software. For these programmers, the extensions to existing
languages or run-time libraries are a viable alternative.

1.5.3 High Performance Fortran

The High Performance Fortran (HPF) initiative [20] seems to be a promising solu-
tion to solve the dusty-deck problem of Fortran codes. However, it only supports
applications that follow the SPMD paradigm and have a very regular structure.
Other applications that are missing these characteristics and present a more asyn-



Section 1.5 Parallel Programming Models and Tools 13

chronous structure are not as successful with the current versions of HPF. Current
and future research will address these issuess.

1.5.4 Message Passing

Message passing libraries allow e�cient parallel programs to be written for dis-
tributed memory systems. These libraries provide routines to initiate and con�gure
the messaging environment as well as sending and receiving packets of data. Cur-
rently, the two most popular high-level message-passing systems for scienti�c and
engineering application are the PVM (Parallel Virtual Machine) from Oak Ridge
National Laboratory and MPI (Message Passing Interface) de�ned by the MPI Fo-
rum.

Currently, there are several implementations of MPI, including versions for net-
works of workstations, clusters of personal computers, distributed-memory multi-
processors, and shared-memory machines. Almost every hardware vendor is sup-
porting MPI. This gives the user a comfortable feeling since an MPI program can
be executed on almost all of the existing computing platforms without the need to
rewrite the program from scratch. The goal of portability, architecture, and net-
work transparency has been achieved with these low-level communication libraries
like MPI and PVM. Both communication libraries provide an interface for C and
Fortran, and additional support of graphical tools.

However, these message-passing systems are still stigmatized as low-level be-
cause most tasks of the parallelization are still left to the application programmer.
When writing parallel applications using message passing, the programmer still has
to develop a signi�cant amount of software to manage some of the tasks of the par-
allelization, such as: the communication and synchronization between processes,
data partitioning and distribution, mapping of processes onto processors, and in-
put/output of data structures. If the application programmer has no special support
for these tasks, it then becomes di�cult to widely exploit parallel computing. The
easy-to-use goal is not accomplished with a bare message-passing system, and hence
requires additional support.

Other ways to provide alternate-programming models are based on Virtual
Shared Memory (VSM) and parallel object-oriented programming. Another way
is to provide a set of programming skeletons in the form of run-time libraries that
already support some of the tasks of parallelization and can be implemented on top
of portable message-passing systems like PVM or MPI.

1.5.5 Virtual Shared Memory

VSM implements a shared-memory programming model in a distributed-memory
environment. Linda is an example of this style of programming [1]. It is based on
the notion of generative communication model and on a virtual shared associative
memory, called tuple space, that is accessible to all the processes by using in and
out operations.



14 Parallel Programming Models and Paradigms Chapter 1

Distributed Shared Memory (DSM) is the extension of the well-accepted shared-
memory programming model on systems without physically shared memory [21].
The shared data space is 
at and accessed through normal read and write operations.
In contrast to message passing, in a DSM system a process that wants to fetch
some data value does not need to know its location; the system will �nd and fetch
it automatically. In most of the DSM systems, shared data may be replicated to
enhance the parallelism and the e�ciency of the applications.

While scalable parallel machines are mostly based on distributed memory, many
users may �nd it easier to write parallel programs using a shared-memory pro-
gramming model. This makes DSM a very promising model, provided it can be
implemented e�ciently.

1.5.6 Parallel Object-Oriented Programming

The idea behind parallel object-oriented programming is to provide suitable ab-
stractions and software engineering methods for structured application design. As
in the traditional object model, objects are de�ned as abstract data types, which
encapsulate their internal state through well-de�ned interfaces and thus represent
passive data containers. If we treat this model as a collection of shared objects, we
can �nd an interesting resemblance with the shared data model.

The object-oriented programming model is by now well established as the state-
of-the-art software engineering methodology for sequential programming, and recent
developments are also emerging to establish object-orientation in the area of parallel
programming. The current lack of acceptance of this model among the scienti�c
community can be explained by the fact that computational scientists still prefer
to write their programs using traditional languages like Fortran. This is the main
di�culty that has been faced by the object-oriented environments, though it is
considered as a promising technique for parallel programming. Some interesting
object-oriented environments such as CC++ and Mentat have been presented in
the literature [24].

1.5.7 Programming Skeletons

Another alternative to the use of message-passing is to provide a set of high-level
abstractions which provides support for the mostly used parallel paradigms. A
programming paradigm is a class of algorithms that solve di�erent problems but
have the same control structure [19]. Programming paradigms usually encapsu-
late information about useful data and communication patterns, and an interesting
idea is to provide such abstractions in the form of programming templates or skele-
tons. A skeleton corresponds to the instantiation of a speci�c parallel programming
paradigm, and it encapsulates the control and communication primitives of the
application into a single abstraction.

After the recognition of parallelizable parts and an identi�cation of the appro-
priate algorithm, a lot of developing time is wasted on programming routines closely
related to the paradigm and not the application itself. With the aid of a good set



Section 1.6 Methodical Design of Parallel Algorithms 15

of e�ciently programmed interaction routines and skeletons, the development time
can be reduced signi�cantly.

The skeleton hides from the user the speci�c details of the implementation and
allows the user to specify the computation in terms of an interface tailored to the
paradigm. This leads to a style of skeleton oriented programming (SOP) which has
been identi�ed as a very promising solution for parallel computing [6].

Skeletons are more general programmingmethods since they can be implemented
on top of message-passing, object-oriented, shared-memory or distributed memory
systems, and provide increased support for parallel programming.

To summarize, there are basically two ways of looking at an explicit parallel pro-
gramming system. In the �rst one, the system provides some primitives to be used
by the programmer. The structuring and the implementation of most of the parallel
control and communication is the responsibility of the programmer. The alternative
is to provide some enhanced support for those control structures that are common
to a parallel programming paradigm. The main task of the programmer would be
to provide those few routines unique to the application, such as computation and
data generation. Numerous parallel programming environments are available, and
many of them do attempt to exploit the characteristics of parallel paradigms.

1.6 Methodical Design of Parallel Algorithms

There is no simple recipe for designing parallel algorithms. However, it can bene�t
from a methodological approach that maximizes the range of options, that provides
mechanisms for evaluating alternatives, and that reduces the cost of backtracking
from wrong choices. The design methodology allows the programmer to focus on
machine-independent issues such as concurrency in the early stage of design process,
and machine-speci�c aspects of design are delayed until late in the design process.
As suggested by Ian Foster, this methodology organizes the design process into four
distinct stages [12]:

� partitioning

� communication

� agglomeration

� mapping

The �rst two stages seek to develop concurrent and scalable algorithms, and the last
two stages focus on locality and performance-related issues as summarized below:

1.6.1 Partitioning

It refers to decomposing of the computational activities and the data on which
it operates into several small tasks. The decomposition of the data associated
with a problem is known as domain/data decomposition, and the decomposition



16 Parallel Programming Models and Paradigms Chapter 1

of computation into disjoint tasks is known as functional decomposition. Various
paradigms underlying the partitioning process are discussed in the next section.

1.6.2 Communication

It focuses on the 
ow of information and coordination among the tasks that are
created during the partitioning stage. The nature of the problem and the decompo-
sition method determine the communication pattern among these cooperative tasks
of a parallel program. The four popular communication patterns commonly used in
parallel programs are: local/global, structured/unstructured, static/dynamic, and
synchronous/asynchronous.

1.6.3 Agglomeration

In this stage, the tasks and communication structure de�ned in the �rst two stages
are evaluated in terms of performance requirements and implementation costs. If
required, tasks are grouped into larger tasks to improve performance or to reduce
development costs. Also, individual communications may be bundled into a super
communication. This will help in reducing communication costs by increasing com-
putation and communication granularity, gaining 
exibility in terms of scalability
and mapping decisions, and reducing software-engineering costs.

1.6.4 Mapping

It is concerned with assigning each task to a processor such that it maximizes
utilization of system resources (such as CPU) while minimizing the communication
costs. Mapping decisions can be taken statically (at compile-time/before program
execution) or dynamically at runtime by load-balancing methods as discussed in
Volume 1 of this book [8] and Chapter 17.

Several grand challenging applications have been built using the above method-
ology (refer to Part III, Algorithms and Applications, for further details on the
development of real-life applications using the above methodology).

1.7 Parallel Programming Paradigms

It has been widely recognized that parallel applications can be classi�ed into some
well de�ned programming paradigms. A few programming paradigms are used re-
peatedly to develop many parallel programs. Each paradigm is a class of algorithms
that have the same control structure [19].

Experience to date suggests that there are a relatively small number of para-
digms underlying most parallel programs [7]. The choice of paradigm is determined
by the available parallel computing resources and by the type of parallelism inher-
ent in the problem. The computing resources may de�ne the level of granularity
that can be e�ciently supported on the system. The type of parallelism re
ects



Section 1.7 Parallel Programming Paradigms 17

the structure of either the application or the data and both types may exist in dif-
ferent parts of the same application. Parallelism arising from the structure of the
application is named as functional parallelism. In this case, di�erent parts of the
program can perform di�erent tasks in a concurrent and cooperative manner. But
parallelism may also be found in the structure of the data. This type of parallelism
allows the execution of parallel processes with identical operation but on di�erent
parts of the data.

1.7.1 Choice of Paradigms

Most of the typical distributed computing applications are based on the very pop-
ular client/server paradigm. In this paradigm, the processes usually communicate
through Remote Procedure Calls (RPCs), but there is no inherent parallelism in
this sort of applications. They are instead used to support distributed services, and
thus we do not consider this paradigm in the parallel computing area.

In the world of parallel computing there are several authors which present a
paradigm classi�cation. Not all of them propose exactly the same one, but we can
create a superset of the paradigms detected in parallel applications.

For instance, in [22], a theoretical classi�cation of parallel programs is presented
and broken into three classes of parallelism:

1. processor farms, which are based on replication of independent jobs;

2. geometric decomposition, based on the parallelisation of data structures; and

3. algorithmic parallelism, which results in the use of data 
ow.

Another classi�cation was presented in [19]. The author studied several parallel
applications and identi�ed the following set of paradigms:

1. pipelining and ring-based applications;

2. divide and conquer;

3. master/slave; and

4. cellular automata applications, which are based on data parallelism.

The author of [23] also proposed a very appropriate classi�cation. The problems
were divided into a few decomposition techniques, namely:

1. Geometric decomposition: the problem domain is broken up into smaller do-
mains and each process executes the algorithm on each part of it.

2. Iterative decomposition: some applications are based on loop execution where
each iteration can be done in an independent way. This approach is imple-
mented through a central queue of runnable tasks, and thus corresponds to
the task-farming paradigm.



18 Parallel Programming Models and Paradigms Chapter 1

3. Recursive decomposition: this strategy starts by breaking the original problem
into several subproblems and solving these in a parallel way. It clearly corre-
sponds to a divide and conquer approach.

4. Speculative decomposition: some problems can use a speculative decomposition
approach: N solution techniques are tried simultaneously, and (N-1) of them
are thrown away as soon as the �rst one returns a plausible answer. In some
cases this could result optimistically in a shorter overall execution time.

5. Functional decomposition: the application is broken down into many distinct
phases, where each phase executes a di�erent algorithm within the same prob-
lem. The most used topology is the process pipelining.

In [15], a somewhat di�erent classi�cation was presented based on the temporal
structure of the problems. The applications were thus divided into:

1. synchronous problems, which correspond to regular computations on regular
data domains;

2. loosely synchronous problems, that are typi�ed by iterative calculations on
geometrically irregular data domains;

3. asynchronous problems, which are characterized by functional parallelism that
is irregular in space and time; and

4. embarrassingly parallel applications, which correspond to the independent
execution of disconnected components of the same program.

Synchronous and loosely synchronous problems present a somehow di�erent syn-
chronization structure, but both rely on data decomposition techniques. According
to an extensive analysis of 84 real applications presented in [14], it was estimated
that these two classes of problems dominated scienti�c and engineering applications
being used in 76 percent of the applications. Asynchronous problems, which are
for instance represented by event-driven simulations, represented 10 percent of the
studied problems. Finally, embarrassingly parallel applications that correspond to
the master/slave model, accounted for 14 percent of the applications.

The most systematic de�nition of paradigms and application templates was pre-
sented in [6]. It describes a generic tuple of factors which fully characterizes a par-
allel algorithm including: process properties (structure, topology and execution),
interaction properties, and data properties (partitioning and placement). That clas-
si�cation included most of the paradigms referred so far, albeit described in deeper
detail.

To summarize, the following paradigms are popularly used in parallel program-
ming:

� Task-Farming (or Master/Slave)

� Single Program Multiple Data (SPMD)



Section 1.7 Parallel Programming Paradigms 19

� Data Pipelining

� Divide and Conquer

� Speculative Parallelism

1.7.2 Task-Farming (or Master/Slave)

The task-farming paradigm consists of two entities: master and multiple slaves. The
master is responsible for decomposing the problem into small tasks (and distributes
these tasks among a farm of slave processes), as well as for gathering the partial
results in order to produce the �nal result of the computation. The slave processes
execute in a very simple cycle: get a message with the task, process the task, and
send the result to the master. Usually, the communication takes place only between
the master and the slaves.

Task-farming may either use static load-balancing or dynamic load-balancing.
In the �rst case, the distribution of tasks is all performed at the beginning of the
computation, which allows the master to participate in the computation after each
slave has been allocated a fraction of the work. The allocation of tasks can be done
once or in a cyclic way. Figure 1.4 presents a schematic representation of this �rst
approach.

The other way is to use a dynamically load-balanced master/slave paradigm,
which can be more suitable when the number of tasks exceeds the number of avail-
able processors, or when the number of tasks is unknown at the start of the ap-
plication, or when the execution times are not predictable, or when we are dealing
with unbalanced problems. An important feature of dynamic load-balancing is the
ability of the application to adapt itself to changing conditions of the system, not
just the load of the processors, but also a possible recon�guration of the system
resources. Due to this characteristic, this paradigm can respond quite well to the
failure of some processors, which simpli�es the creation of robust applications that
are capable of surviving the loss of slaves or even the master.

At an extreme, this paradigm can also enclose some applications that are based
on a trivial decomposition approach: the sequential algorithm is executed simulta-
neously on di�erent processors but with di�erent data inputs. In such applications
there are no dependencies between di�erent runs so there is no need for communi-
cation or coordination between the processes.

This paradigm can achieve high computational speedups and an interesting de-
gree of scalability. However, for a large number of processors the centralized control
of the master process can become a bottleneck to the applications. It is, however,
possible to enhance the scalability of the paradigm by extending the single master
to a set of masters, each of them controlling a di�erent group of process slaves.

1.7.3 Single-Program Multiple-Data (SPMD)

The SPMD paradigm is the most commonly used paradigm. Each process executes
basically the same piece of code but on a di�erent part of the data. This involves



20 Parallel Programming Models and Paradigms Chapter 1

    Master
distribute tasks

Slave 1 Slave 2 Slave 3 Slave 4

Terminate

Collect
Results

communications

Figure 1.4 A static master/slave structure.

the splitting of application data among the available processors. This type of par-
allelism is also referred to as geometric parallelism, domain decomposition, or data
parallelism. Figure 1.5 presents a schematic representation of this paradigm.

Many physical problems have an underlying regular geometric structure, with
spatially limited interactions. This homogeneity allows the data to be distributed
uniformly across the processors, where each one will be responsible for a de�ned
spatial area. Processors communicate with neighbouring processors and the com-
munication load will be proportional to the size of the boundary of the element,
while the computation load will be proportional to the volume of the element. It
may also be required to perform some global synchronization periodically among
all the processes. The communication pattern is usually highly structured and ex-
tremely predictable. The data may initially be self-generated by each process or
may be read from the disk during the initialization stage.

SPMD applications can be very e�cient if the data is well distributed by the
processes and the system is homogeneous. If the processes present di�erent work-
loads or capabilities, then the paradigm requires the support of some load-balancing
scheme able to adapt the data distribution layout during run-time execution.

This paradigm is highly sensitive to the loss of some process. Usually, the loss



Section 1.7 Parallel Programming Paradigms 21

of a single process is enough to cause a deadlock in the calculation in which none
of the processes can advance beyond a global synchronization point.

Distribute Data

Calculate Calculate Calculate Calculate
Exchange Exchange Exchange Exchange
Calculate Calculate Calculate Calculate

Collect Results

Figure 1.5 Basic structure of a SPMD program.

1.7.4 Data Pipelining

This is a more �ne-grained parallelism, which is based on a functional decomposition
approach: the tasks of the algorithm, which are capable of concurrent operation,
are identi�ed and each processor executes a small part of the total algorithm. The
pipeline is one of the simplest and most popular functional decomposition para-
digms. Figure 1.6 presents the structure of this model.

Processes are organized in a pipeline { each process corresponds to a stage of the
pipeline and is responsible for a particular task. The communication pattern can
be very simple since the data 
ows between the adjacent stages of the pipeline. For
this reason, this type of parallelism is also sometimes referred to as data 
ow paral-
lelism. The communication may be completely asynchronous. The e�ciency of this
paradigm is directly dependent on the ability to balance the load across the stages
of the pipeline. The robustness of this paradigm against recon�gurations of the
system can be achieved by providing multiple independent paths across the stages.
This paradigm is often used in data reduction or image processing applications.

1.7.5 Divide and Conquer

The divide and conquer approach is well known in sequential algorithm develop-
ment. A problem is divided up into two or more subproblems. Each of these
subproblems is solved independently and their results are combined to give the �-
nal result. Often, the smaller problems are just smaller instances of the original



22 Parallel Programming Models and Paradigms Chapter 1

Process 1 Process 2 Process 3

Phase A Phase B Phase C
OutputInput

Figure 1.6 Data pipeline structure.

problem, giving rise to a recursive solution. Processing may be required to divide
the original problem or to combine the results of the subproblems. In parallel divide
and conquer, the subproblems can be solved at the same time, given su�cient par-
allelism. The splitting and recombining process also makes use of some parallelism,
but these operations require some process communication. However, because the
subproblems are independent, no communication is necessary between processes
working on di�erent subproblems.

We can identify three generic computational operations for divide and conquer:
split, compute, and join. The application is organized in a sort of virtual tree: some
of the processes create subtasks and have to combine the results of those to produce
an aggregate result. The tasks are actually computed by the compute processes at
the leaf nodes of the virtual tree. Figure 1.7 presents this execution.

main problem

sub-problems

split

join

Figure 1.7 Divide and conquer as a virtual tree.

The task-farming paradigm can be seen as a slightly modi�ed, degenerated form
of divide and conquer; i.e., where problem decomposition is performed before tasks
are submitted, the split and join operations is only done by the master process and



Section 1.8 Programming Skeletons and Templates 23

all the other processes are only responsible for the computation.
In the divide and conquer model, tasks may be generated during runtime and

may be added to a single job queue on the manager processor or distributed through
several job queues across the system.

The programming paradigms can be mainly characterized by two factors: de-
composition and distribution of the parallelism. For instance, in geometric paral-
lelism both the decomposition and distribution are static. The same happens with
the functional decomposition and distribution of data pipelining. In task farm-
ing, the work is statically decomposed but dynamically distributed. Finally, in the
divide and conquer paradigm both decomposition and distribution are dynamic.

1.7.6 Speculative Parallelism

This paradigm is employed when it is quite di�cult to obtain parallelism through
any one of the previous paradigms. Some problems have complex data dependencies,
which reduces the possibilities of exploiting the parallel execution. In these cases,
an appropriate solution is to execute the problem in small parts but use some
speculation or optimistic execution to facilitate the parallelism.

In some asynchronous problems, like discrete-event simulation [17], the system
will attempt the look-ahead execution of related activities in an optimistic assump-
tion that such concurrent executions do not violate the consistency of the problem
execution. Sometimes they do, and in such cases it is necessary to rollback to some
previous consistent state of the application.

Another use of this paradigm is to employ di�erent algorithms for the same
problem; the �rst one to give the �nal solution is the one that is chosen.

1.7.7 Hybrid Models

The boundaries between the paradigms can sometimes be fuzzy and, in some ap-
plications, there could be the need to mix elements of di�erent paradigms. Hybrid
methods that include more than one basic paradigm are usually observed in some
large-scale parallel applications. These are situations where it makes sense to mix
data and task parallelism simultaneously or in di�erent parts of the same program.

1.8 Programming Skeletons and Templates

The term skeleton has been identi�ed by two important characteristics [10]:

� it provides only an underlying structure that can be hidden from the user;

� it is incomplete and can be parameterized, not just by the number of pro-
cessors, but also by other factors, such as granularity, topology and data
distribution.

Hiding the underlying structure from the user by presenting a simple interface
results in programs that are easier to understand and maintain, as well as less prone



24 Parallel Programming Models and Paradigms Chapter 1

to error. In particular, the programmer can now focus on the computational task
rather than the control and coordination of the parallelism.

Exploiting the observation that parallel applications follow some well-identi�ed
structures, much of the parallel software speci�c to the paradigm can be potentially
reusable. Such software can be encapsulated in parallel libraries to promote the
reuse of code, reduce the burden on the parallel programmer, and to facilitate the
task of recycling existing sequential programs. This guideline was followed by the
PUL project [9], the TINA system [7], and the ARNIA package [16].

A project developed at the Edinburgh Parallel Computing Centre [9] involved
the writing of a package of parallel utilities (PUL) on top of MPI that gives pro-
gramming support for the most common programming paradigms as well as parallel
input/output. Apart from the libraries for global and parallel I/O, the collection of
the PUL utilities includes a library for task-farming applications (PUL-TF), another
that supports regular domain decomposition applications (PUL-RD), and another
one that can be used to program irregular mesh-based problems (PUL-SM). This
set of PUL utilities hides the hard details of the parallel implementation from the
application programmer and provides a portable programming interface that can
be used on several computing platforms. To ensure programming 
exibility, the
application can make simultaneous use of di�erent PUL libraries and have direct
access to the MPI communication routines.

The ARNIA package [16] includes a library for master/slave applications, an-
other for the domain decomposition paradigm, a special library for distributed com-
puting applications based on the client/server model, and a fourth library that sup-
ports a global shared memory emulation. ARNIA allows the combined use of its
building libraries for those applications that present mixed paradigms or distinct
computational phases.

In [7], a skeleton generator was presented, called TINA, that supports the
reusability and portability of parallel program components and provides a complete
programming environment.

Another graphical programming environment, named TRACS (see Chapter 7),
provides a graphical toolkit to design distributed/parallel applications based on
reusable components, such as farms, grids, and pipes.

Porting and rewriting application programs requires a support environment that
encourages code reuse, portability among di�erent platforms, and scalability across
similar systems of di�erent size. This approach, based on skeletal frameworks, is a
viable solution for parallel programming. It can signi�cantly increase programmer
productivity because programmers will be able to develop parts of programs sim-
ply by �lling in the templates. The development of software templates has been
increasingly receiving the attention of academic research and is seen as one of the
key directions for parallel software.

The most important advantages of this approach for parallel programming are
summarized below.



Section 1.9 Conclusions 25

1.8.1 Programmability

A set of ready-to-use solutions for parallelization will considerably increase the pro-
ductivity of the programmers: the idea is to hide the lower level details of the
system, to promote the reuse of code, and relieve the burden of the application pro-
grammer. This approach will increase the programmability of the parallel systems
since the programmer will have more time to spend in optimizing the application
itself, rather than on low-level details of the underlying programming system.

1.8.2 Reusability

Reusability is a hot-topic in software engineering. The provision of skeletons or
templates to the application programmer increases the potential for reuse by al-
lowing the same parallel structure to be used in di�erent applications. This avoids
the replication of e�orts involved in developing and optimizing the code speci�c to
the parallel template. In [3] it was reported that a percentage of code reuse rose
from 30 percent up to 90 percent when using skeleton-oriented programming. In
the Chameleon system [2], 60 percent of the code was reusable, while in [5] it was
reported that an average fraction of 80 percent of the code was reused with the
ROPE library.

1.8.3 Portability

Providing portability of the parallel applications is a problem of paramount impor-
tance. It allows applications developed on one platform to run on another platform
without the need for redevelopment.

1.8.4 E�ciency

There could be some con
icting trade-o� between optimal performance and porta-
bility/programmability. Both portability and e�ciency of parallel programming
systems play an important role in the success of parallel computing.

1.9 Conclusions

This chapter presented a brief overview about the motivations for using clusters in
parallel computing, presented the main models of execution (parallelizing compilers,
message-passing libraries, virtual shared-memory, object-oriented programming),
and described the mostly used parallel programming paradigms that can be found
in existing applications. At the end of the chapter we have underlined the most
important advantages of using programming skeletons and environments for higher-
level parallel programming.

In these past years there has been a considerable e�ort in developing software
for exploiting the computational power of parallel, distributed, and cluster-based
systems. Many advances have been achieved in parallel software but there is still



26 Parallel Programming Models and Paradigms Chapter 1

considerable work to do in the next decade in order to e�ectively exploit the com-
putational power of cluster for parallel high performance computing.

Acknowledgment

We thank Dan Hyde (Bucknell University, USA) for his comments and suggestions
on this chapter.

1.10 Bibliography

[1] S. Ahuja, N. Carriero, and D. Gelernter. Linda and Friends. IEEE Computer,
pages 26-34, August 1986.

[2] G.A. Alverson and D. Notkin. Program Structuring for E�ective Parallel Porta-
bility. IEEE Transactions on Parallel and Distributed Systems, vol. 4 (9), pages
1041-1069, September 1993.

[3] B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti and M. Vanneschi. Sum-
marising an Experiment in Parallel Programming Language Design. Lecture
Notes in Computer Science, 919, High-Performance Computing and Network-
ing, HPCN'95, Milano, Italy, pages 7-13, 1995.

[4] A. Barak and O. La'adan. Performance of the MOSIX Parallel System for a
Cluster of PC's. In Proceedings of HPCN - Europe conference, 1997.

[5] J.C. Browne, T. Lee, and J.Werth. Experimental Evaluation of a Reusability-
Oriented Parallel Programming Environment. IEEE Transactions on Software
Engineering, vol. 16 (2), pages 111-120, February 1990.

[6] H. Burkhart, C.F. Korn, S. Gutzwiller, P. Ohnacker, and S.Waser. em BACS:
Basel Algorithm Classi�cation Scheme. Technical Report 93-03, Univ. Basel,
Switzerland, 1993.

[7] H. Burkhart and S. Gutzwiller. Steps Towards Reusability and Portability in
Parallel Programming. In Programming Environments for Massively Parallel
Distributed Systems, Monte Verita, Switzerland pages 147-157, April 1994.

[8] R. Buyya (editor). High Performance Cluster Computing: Systems and Archi-
tectures. Volume 1, Prentice Hall PTR, NJ, 1999.

[9] L. Clarke, R. Fletcher, S. Trewin, A. Bruce, G. Smith, and S. Chapple. Reuse,
Portability and Parallel Libraries. In Proceedings of IFIP WG10.3 Working
Conference on Programming Environments for Massively Parallel and Dis-
tributed Systems, Monte Verita, Switzerland, April 1994.

[10] M.Cole. Algorithmic Skeletons: Structured Management of Parallel Computa-
tions. MIT Press, Cambridge, MA, 1989.



Section 1.10 Bibliography 27

[11] J. Feo, D. Cann, and R. Oldehoeft. A Report on the SISAL Language Project.
Journal of Parallel and Distributed Computing, vol 10, pages 349-366, 1990.

[12] I. Foster. Designing and Building Parallel Programs. Addison Wesley, 1996,
available at http://www.mcs.anl.gov/dbpp

[13] I. Foster and S. Tuecke. Parallel Programming with PCN. Technical Report
ANL-91/32, Argonne National Laboratory, Argonne, December 1991.

[14] G. Fox. What Have We Learnt from Using Real Parallel Machines to Solve
Real Problems. In Proceedings 3rd Conf. Hypercube Concurrent Computers
and Applications, 1988.

[15] G. Fox. Parallel Computing Comes of Age: Supercomputer Level Parallel
Computations at Caltech. Concurrency: Practice and Experience, vol. 1 (1),
pages 63-103, September 1989.

[16] M. Fruscione, P. Flocchini, E. Giudici, S. Punzi, and P. Stofella. Parallel Com-
putational Frames: An Approach to Parallel Application Development based
on Message Passing Systems. In Programming Environments for Massively
Parallel Distributed Systems, Monte Verita, Italy, pages 117-126, 1994.

[17] R. M. Fujimoto. Parallel Discrete Event Simulation. Communications of the
ACM, vol.33 (10), pages 30-53, October 1990.

[18] Grand Challenging Applications. http://www.mcs.anl.gov/Projects/

grand-challenges/

[19] P. B. Hansen. Model Programs for Computational Science: A Programming
Methodology for Multicomputers. Concurrency: Practice and Experience, vol.
5 (5), pages 407-423, 1993.

[20] D. Loveman. High-Performance Fortran. IEEE Parallel and Distributed Tech-
nology, vol. 1 (1), February 1993.

[21] B. Nitzberg and V. Lo. Distributed Shared Memory: A Survey of Issues and
Algorithms. IEEE Computer, vol. 24 (8), pages 52-60, 1991.

[22] D. Pritchard. Mathematical Models of Distributed Computation. In Proceed-
ings of OUG-7, Parallel Programming on Transputer Based Machines, IOS
Press, pages 25-36, 1988.

[23] G. Wilson. Parallel Programming for Scientists and Engineers. MIT Press,
Cambridge, MA, 1995.

[24] G. Wilson and P. Lu. Parallel Programming using C++. MIT Press, Cam-
bridge, MA, 1996.


