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The standard model of hot big-bang cosmology requires initial conditions which are problematic in two ways: (1)
The early universe is assumed to be highly homogeneous, in spite of the fact that separated regions were causally
disconnected (horizon problem); and (2) the initial value of the Hubble constant must be fine tuned to extraordinary

accuracy to produce a universe as flat (i.e., near critical mass density) as the one we see today (flatness problem).
These problems would disappear if, in its early history, the universe supercooled to temperatures 28 or more orders
of magnitude below the critical temperature for some phase transition. A huge expansion factor would then result
from a period of exponential growth, and the entropy of the universe would be multiplied by a huge factor when the
latent heat is released. Such a scenario is completely natural in the context of grand unified models of elementary-

particle interactions. In such models, the supercooling is also relevant to the problem of monopole suppression.

Unfortunately, the scenario seems to lead to some unacceptable consequences, so modifications must be sought.

I. INTRODUCTION: THE HORIZON AND FLATNESS
PROBLEMS

The standard model of hot big-bang cosmology
relies on the assumption of initial conditions which
are very puzzling in two ways which I will explain
below. The purpose of this paper is to suggest a
modified scenario which avoids both of these puz-
zles.

By "standard model, " I refer to an adiabatically
expanding radiation- dominated universe described
by a Robertson-%alker metric. Details will be
given in Sec. II.

Before explaining the puzzles, I would first like
to clarify my notion of "initial conditions. " The
standard model has a singularity which is conven-
tionally taken to be at time t =0. As t -0, the
temperature T —~. Thus, no initial-value prob-
lem can be defined at t=0. However, when T is
of the order of the Planck mass (Mz, —=I/~6=1. 22
&&10~~ GeV)' or greater, the equations of the stan-
dard model are undoubtedly meaningless, since
quantum gravitational effects are expected to be-
come essential. Thus, within the scope of our
knowl, edge, it is sensible to begin the hot big-bang
scenario at some temperature To which is com-
fortably below Mp, let us say To ——10"GeV. At
this time one can take the description of the uni-
verse as a set of initial conditions, and the equa-
tions of motion then describe the subsequent evolu-
tion. Of course, the equation of state for matter
at these temperatures is not really known, but one
can make various hypotheses and pursue the con-
sequences.

In the standard model, the initial universe is
taken to be homogeneous and isotropic, and filled
with a gas of effectively massless particles in
thermal equilibrium at temperature To. The ini-
tial value of the Hubble expansion "constant" H is
taken to be Ho, and the model universe is then

completely described.
Now I can explain the puzzles. The first is the

well-known horizon problem. 2 The initial uni-
verse is assumed to be homogeneous, yet it con-
sists of at least -10" separate regions which are
causally disconnected (i. e. , these regions have
not yet had time to communicate with each other
via light signals). ' (The precise assumptions
which lead to these numbers will be spelled out in
Sec. II. ) Thus, one must assume that the forces
which created these initial conditions were capable
of violating causality.

The second puzzle is the flatness problem. This
puzzle seems to be much less celebrated than the
first, but it has been stressed by Dicke and Pee-
bles. I feel that it is of comparable importance
to the first. It is known that the energy density p
of the universe today is near the critical value p„
(corresponding to the borderline between an open
and closed universe). One can safely assume that~

0. 01 & Q& ( 10,

where

0 —= p/p„= (8w/3)Gp/H2,

and the subscript p denotes the value at the present
time. Although these bounds do not appear at first
sight to be remarkably stringent, they, in fact,
have powerful implications. The key point is that
the condition 0=1 is unstable. Furthermore, the
only time scale which appears in the equations for
a radiation-dominated universe is the Planck time,
1/I„=5. 4 && 10 sec. A typical closed universe
will reach its maximum size on the order of this
time scale, while a typical open universe will
dwindle to a value of p much less than p„. A uni-
verse can survive -10' years only by extreme fine
tuning of the initial values of p and H, so that p is
very near p„. For the initial conditions taken at
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To ——10 GeV, the value of Ho must be fine tuned
to an accuracy of one part in 10". In the standard
model this incredibly precise initial relationship
must be assumed without explanation. (For any
reader who is not convinced that there is a real
problem here, variations of this argument are giv-
en in the Appendix. )

The reader should not assume that these incredi-
ble numbers are due merely to the rather large
value I have taken for 7.'0. If I had chosen a modest
value such as To ——1 MeV, I mould still have con-
cluded that the "initial" universe consisted of at
least -10" causally disconnected regions, and that
the initial value of Ho was fine tuned to one part in
10 . These numbers are much smaller than the
previous set, but they are still very impressive.

Of course, any problem involving the initial
conditions can always be put off until we under-
stand the physics of T ~M&. However, it is the
purpose of this paper to show that these puzzles
might be obviated by a scenario for the behavior

- of the universe at temperatures mell below M&.
The paper is organized as follows. The assump-

tions and basic equations of the standard model are
summarized in Sec. II. In Sec. ID, I describe the
inflationary universe scenario, showing how it can
eliminate the horizon and flatness problems. The
scenario is discussed in the context of grand mod-
els in Sec. IV, and comments are made concerning
magnetic monopole suppression. In Sec. V I dis-
cuss briefly the key undesirable feature of the
scenario: the inhomogeneities produced by the
random nucleation of bubbles. Some vague ideas
which might alleviate these difficulties are men-
tioned in Sec. VI. '

k 8m
H +—= —GpR2 3

(2. 2b)

where H—=R/R is the Hubble "constant" (the dot de-
notes the derivative with respect to f). Conserva-
tion of energy is expressed by

(2. 3)

where p denotes the pressure. In the standard
model one also assumes that the expansion is adi-
abatic, in which case

—(sR )=0
dt

(2. 4)

7TR

p = 3p = —3t(T)T',
30

(2. 6)

(2. 6)

where s is the entropy density.
To determine the evolution of the universe, the

above equations must be supplemented by an equa-
tion of state for matter. It is now standard to de-
scribe matter by means of a field theory, and at
high temperatures this means that the equation of
state is to a good approximation that of an ideal
quantum gas of massless particles. Let N, (T) de-
note the number of bosonic spin degrees of free-
dom which are effectively massless at temperature
T (e. g. , the photon contributes two units to N, );
and let N&(T) denote the corresponding number for
fermions (e. g. , electrons and positrons together
contribute four units). Provided that T is not near
any mass thresholds, the thermodynamic functions
are given by

II. THE STANDARD MODEL OF THE VERY EARI Y
UNIVERSE n =, 3V(T)T' (2. 7)

4n
R = ——G(p+ 3p)R, (2. 2a)

In this section I will summarize the basic equa-
tions of the standard model, and I will spell out the

assumptions which lead to the statements made in
the Introduc tion.

The universe is assumed to be homogeneous and

isotropic, and is therefore described by the Rob-
ertson-Walker metric:

dJ'
dv =dF —R~(t) +r (dB +sin 9dg )

1 —0
(2. 1)

where 4=+1, —1, or 0 for a closed, open, or
flat universe, respectively. It should be empha-
sized that any value of k is possible, but by con-
vention r and R(t) are rescaled so that k takes on

one of the three discrete values. The evolution of
R(t) is governed by the Einstein equations

where

m{T)=N, (T)+ '.N, (T}, -
3t'(T) =N, (T) + ', N, (T) . -

(2. 6)

(2. 9}

Here n denotes the particle number density, and

t(3) = 1.202 06. . . is the Riemann zeta function.
The evolution of the universe is then found by

rewriting (2. 2b) solely in terms of the tempera-
ture. Againing assuming that T is not near any
mass thresholds, one finds

4~'—
~

+ e(T)T' = Got(T)T4, (2. 10)

where

u ~ 2v'~&T} "'
RT i45 S (2. 11)

where S—=A s denotes the total entropy in a volume
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specified by the radius of curvature R.
Since S is conserved, its value in the early uni-

verse can be determined (or at least bounded) by
current observations. Taking p & 10p„ today' it
follows that today

ratio of volumes, so

l 11 45
I

's~ (gs Mp
43 4~') L,T„T )

= 4x10-ss&-t s(M~/T}s (2. 20)

k
R2 & 9H2. (2. 12)

Taking 'X- 10s and Ts ——10" GeV, one finds ls'/Lo
=10 . This is the horizon problem.

From now on I will take k=+ 1; the special case k
=0 is still included as the limit R —~. Then today
B+ 3 g - 3 x 2 0 years. Taking the present photon
temperature T„as 2. 7'K, one then finds that the
photon contribution to S is bounded by

S„&3 &&1085 (2. ia)

and

S& 1086

0&s3ts' s .

(2. 14

(2. iS)

Assuming that there are three species of massless
neutrinos (e, p, and r), all of which decouple at a '

time mhen the other effectively massless particles
are the electrons and photons, then S„=21/22S„.
Thus,

III. THE INFLATIONARY UNIVERSE

In this section I will describe a scenario which
is capable of avoiding the horizon and flatness
problems.

From Sec. II one can see that both problems
could disappear if the assumption of adiabaticity
were grossly incorrect. Suppose instead that

Sp ——Z So, (3. i)
where S~ and So denote the present and initial val-
ues of R s, and Z is some large factor.

Let us look first at the flatness problem. Given
(3. 1), the right-hand side (RHS) of (2. 16) is multi-
plied by a factor of Z . The "initial" value (at Ts
=10'~ GeV) of Ip —p„ I/p could be of order unity,
and the flatness problem would be obviated, if

But then
Z& 3 X102'. (3. 2)

—
~ s~ & 3 x 10 ssX (M /T)

P I

4m' %2

(2. ie)

Taking T= 10' GeV and%-10 (typical of grand
unified models), one finds Ip —p„ I/p & 10+s. This
is the flatness problem.

The sT term can now be deleted from (2. 10),
which is then solved (for temperatures higher than
all particle masses) to give

Now consider the horizon problem. The RHS of
(2. 19) is multiplied by Z, which means that the
length scale of the early universe, at any given
temperature, was smaller by a factor of Z than
had been previously thought. If Z is sufficiently
large, then the initial region which evolved into
our observed region of the universe would have
been smaller than the horizon distance at that time.
To see how large Z must be, note that the RHS of
(2. 20) is multiplied by Z . Thus, if

P
2yt ' (2. 17) Z& 5&20", (3.3}

where ys = (4v /45)X. (For the minimal SUs grand
unified model, N, =82, N&

——90, and y=21. 05. )
Conservation of entropy implies RT= constant, so
A o-t" 2. A light pulse beginning at t=0 will have
traveled by time t a physical distance

t
l(t) =R(t) dt'R (t') = 2t, (2. iS)

0

and this gives the physical horizon distance. This
horizon distance is to be compared with the radius
L(t) of the region at time t which will evolve into
our currently observed region of the universe. A-
gain using conservation of entropy,

(2. i9)

where s~ is the present entropy density and L~
-10' years is the radius of the currently observed
region of the universe. One is interested in the

then the horizon problem disappears. (It should be
noted that the horizon will still exist; it will simply
be moved out to distances which have not-been ob-
served. )

It is not surprising that the RHS's of (3. 2) and
(3. 3) are approximately equal, since they both
correspond roughly to Sp of order unity.

I will now describe a scenario, which I call the
inflationary universe, which is capable of such a
large entropy production.

Suppose the equation of state for matter (with all
chemical potentials set equal to zero} exhibits a
first-order phase transition at some critical tem-
perature T,. Then as the universe cools through
the temperature T„one would expect bubbles of
the low-temperature phase to nucleate and grow.
However, suppose the nucleation rate for this
phase transition is rather low. The universe will
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continue to cool as it expands, and it will then su-
percool in the high- temperature phase. Suppose
that this supercooling continues down to some tem-
perature T„many orders of magnitude below T,.
When the phase transition finally takes place at
temperature T„ the latent heat is released. How-
ever, this latent heat is characteristic of the ener-
gy scale T„which is huge relative to T,. The uni-
verse is then reheated to some temperature T„
which is compa, rable to T,. The entropy density is
then increased by a factor of roughly (T„/T,) (as-
suming that the number X of degrees of freedom
for the two phases are comparable), while the val-
ue of R remains unchanged. Thus,

Z= T„/T, . (s. 4)

If the universe supercools by 28 or more orders of
magnitude below some critical temperature, the
horizon and flatness problems disappear.

In order for this scenario to work, it is neces-
sary for the universe to be essentially devoid of
any strictly conserved quantities. Let n denote the
density of some strictly conserved quantity, and
let y= n/s denot—e the ratio of this conserved quan-
tity to entropy. Then x~ = Z 3x0 + 10 +0, Thus,
only an absurdly large value for the initial ratio
would lead to a measurable value for the present
ratio. Thus, if baryon number were exactly con-
served, the inflationary model would be untenable.
However, in the context of grand unified models,
baryon number is not exactly conserved. The net
baryon number of the universe is believed to be
created by CP-violating interactions at a tempera-
ture of 10 -10 GeV. Thus, provided that T, lies
in this range or higher, there is no problem. The
baryon production would take place after the re-
heating. (However, strong constraints are im-
posed on the entropy which ca.n be generated in any
phase transition with T, «10 GeV, in particular,
the Weinberg-Salam phase transition. )

Let us examine the properties of the supercooling
universe in more detail. Note that the energy den-
sity p(T), given in the standard model by (2. 5),
must now be modified. As T-O, the system is
cooling not toward the true vacuum, but rather to-
ward some metastable false vacuum with an energy
density p0 which is necessarily higher than that of
the true vacuum. Thus, to a good approximation
(ignoring mass thresholds)

theory, the form of T~„ is determined by the con-
servation requirement up to the possible modifica-
tion

Ttt, v Ttt v +

~gatv

s (s. 6)

for any constant X. (X cannot depend on the values
of the fields, nor can it depend on the temperature
or the phase. ) The freedom to introduce the mod-
ification (3. 6) is identical to the freedom to intro-
duce a cosmological constant into Einstein's equa-
tions. One can always choose to write Einstein's
equations without an explicit cosmological term;
the cosmological constant A is then defined by

(0 [ T,„I0) =Ag. „, (3.7)

Gx(r)r -e(r)r +—Gp .
T2 4n 8w

T 45 0' (3.8)

This equation has two types of solutions, depending
on the parameters. If e& e0, where

8w2v' 30
0 45 GvPO ~ (s. 9)

then the expansion of the universe is halted at a
temperature T „given by

3Pp ~ ~-(~ 2
q

1/2 2

r '=, '- —+ ~—
0 g(60

(s. io)

and then the universe contracts again. Note that
T „is of 0(T,), so this is not the desired scenar-
io. The case of interest is e& e0, in which case the
expansion of the universe is unchecked. [Note that
co-v9LT, '/M~' ispresumably avery small number.
Thus 0( e & eo (a closed universe) seems unlikely,
but e & 0 (an open universe) is quite plausible. ]
Once the temperature is low enough for the p0 term
to dominate over the other two terms on the HHS
of (3. 8), one has

T(t) = const&&e "',
where

(3. 11)

where Io) denotes the true vacuum. A is identified
as the energy density of the vacuum, and, in prin-
ciple, there is no reason for it to vanish. Empir-
ically A is known to be very small ( IA I ( 10+6

GeV ) so I will take its value to be zero. " The
value of p0 is then necessarily positive and is de-
termined by the particle theory. '2 It is typically
of 0(r,').

Using (3. 5), Eq. (2. 10) becomes

p(T) = —Ot(r)T' + po. (s. 5) Sm'
X' = —G~0 ~

3
(3. 12)

Perhaps a few words should be said concerning
the zero point of energy. Classical general rela-
tivity couples to an energy-momentum tensor of
matter, T~„, which is necessarily (covariantly)
conserved. When matter is described by a field

Since RT = const, one has"

R(t) = const&& e" '.
The universe is expanding exponentially, in a false



IN F LATIONAR 7 UNIVERSE: A POSSIBLE SOLUTION TO. . . 351

p(t) = exp — dtqX(t~)R (tq) V(t, t~)
p

where

4m ' dt
v(~, t, ) =-s, R(t, )

(3. 14)

(s. 15)

is the coordinate volume at time t of a bubble which

vacuum state of energy density pp. The Hubble
constant is given by H=R/R=y. (More precisely,
H approaches X monotonically. from above. This
behavior differs markedly from the standard rnod-
el, in which H falls as t"'. )

The false vacuum state is Lorentz invariant, so
T& = p'pg+ . I't follows tha't p = pp the pressure
is negative. This negative pressure allows for the
conservation of energy, Eq. (2. 3). From the sec-
ond-order Einstein equation (2. 2a), it can be seen
that the negative pressure is also the driving force
behind the exponential expansion.

The Lorentz invariance of the false vacuum has
one other consequence: The metric described by
(3. 13) (with @=0)does not single out a comoving
frame. The metric is invariant under an O(4, 1)
group of transformations, in contrast to the usual
Robertson-Walker invariance of O(4). It is known
as the de Sitter metric, and it is discussed in the
s tandard literature. '

Now consider the process of bubble formation in
a Robertson-Walker universe. The bubbles form
randomly, so there is a certain nucleation rate
X(t), which is the probability per (physical) volume
per time that a bubble will form in any region
which is still in the high-temperature phase. I
will idealize the situation slightly and assume that
the bubbles start at a point and expand at the speed
of light. Furthermore, I neglect k in the metric,
so d7 =dt —R (t)dx .

I want to calculate p(t), the probability that any
given point remains in the high-temperature phase
at time t. Note that the distribution of bubbles is
totally uncorrelated except for the exclusion prin-
ciple that bubbles do not form inside of bubbles.
This exclusion principle causes no problem be-
cause one can imagine fictitious bubbles which
form inside the real bubbles with the same nuclea-
tion rate X(t). With all bubbles expanding at the

speed of light, the fictitious bubbles mill be forever
inside the real bubbles and will have no effect on

p(t). The distribution of all bubbles, real and fic-
titious, is then totally uncorrelated.

P(t) is the probability that there are no bubbles
which engulf a given point in space. But the num-
ber of bubbles mhich engulf a given point is a Pois-
son-distributed variable, so P(t) =exp[-1V(t)],
where Z(t) is the expectation value of the number
of bubbles engulfing the point. Thus

formed at time t&.

I will now' assume that the nucleation rate is suf-
ficiently slow so that no significant nucleation takes
place until T«T„when exponential growth has set
in. I will further assume that by this time &(t) is
given approximately by the zero-temperature nu-
cleation rate Xp. One then has

P(t) = exp ——+0(1) (3. Is)

where

3X
T =—

4nzp' (s. iv)

and O(1) refers to terms which approach a constant
as Xt —~. During one of these time constants, the
universe will expand by a factor

3X4 l
Z, = exp(}t~) = exp

4mXp)
' (s. is}

If the phase transition is associated with the ex-
pectation value of a Higgs field, then Xp can be cal-
culated using the method of Coleman and Callan. "
The key point is that nucleation is a tunneling pro-
cess, so that &p is typically very small. The
Coleman-Callan method gives an answer of the
form

&0 =A po exp(-B), (s. 19}

where B is a barrier penetration term and A is a,

dimensionless coefficient of order unity. Since Z,
is then an exponential of an exponential, one can
very easily' ' obtain values as large as log&pZ

=28, or even log&pZ=10
Thus, if the universe reaches a state of exponen-

tial growth, it is quite plausible for it to expand
and supercool by a huge number of orders of mag-
nitude before a significant fraction of the universe
undergoes the phase transition.

So far I have assumed that the ea, rly universe can
be described from the beginning by a Robertson-
Walker metric. If this assumption were really
necessary, then it would be senseless to talk about
"solving" the horizon problem; perfect homogeneity
was assumed at the outset. Thus, I must now ar-
gue that the assumption can probably be dropped.

Suppose instead that the initial metric, and the
distribution of particles, mas rather chaotic. One
would then expect that statistical effects mould tend
to thermalize the particle distribution on a local
scale. 2 It has also been shown (in idealized cir-
cumstances} that anisotropies in the metric are
damped out on the time scale of -10' Planck
times. The damping of inhornogeneities in the
metric has also been studied, 22 and it is reasonable
to expect such damping to occur. Thus, assuming
that at least some region of the universe started at
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temperatures high compared to T„one would ex-
pect that, by the time the temperature in one of
these regions falls to T„ it will be locally homoge-
neous, isotropic, and in thermal equilibrium. By
locally, I am talking about a length scale $ which
is of course less than the horizon distance. It will
then be possible to describe this local region of the
universe by a Robertson-Walker metric, which will
be accurate at distance scales small compared to

When the temperature of such a region falls be-
low T„ the inflationary scenario will take place.
The end result will be a, huge region of space which
is homogeneous, isotropie, and of nearly critical
mass density. If Z is sufficiently large, this re-
gion can be bigger than (or much bigger than) our
observed region of the universe.

IV. GRAND UNIFIED MODELS AND MAGNETIC
MONOPOLE PRODUCTION

In this section I will discuss the inflationary
model in the context of grand unified models of
elementary-par ticle interac tions. 2 ~

A grand unified model begins with a, simple gauge
group G which is a valid symmetry at the highest
energies. As the energy is lowered, the theory
undergoes a hierarchy of spontaneous symmetry
breaking into successive subgroups: G -0„
—' ' '-Ho, where Hi ——SU3&&SU2&&Uq [@CD (quantum
chromodynamics) & Weinberg-Salam] and Ho ——SU3
x U& ". In the Georgi-Glashow model, which is
the simplest model of this type, G = SU, and n = 1.
The symmetry breaking of SU& —SU3 x SU2 x U$ oc-
curs at an energy scale M~- 10 GeV.

At high temperatures, it was suggested by Kirzh-
nits and Linde25 that the Higgs fields of any spon-
taneously broken gauge theory would lose their ex-
pectation values, resulting in a high-temperature
phase in which the full gauge symmetry is re-
stored. A formalism for treating such problems
was developed by Weinberg and by Dolan and
Jackiw. In the range of parameters for which the
tree potential is valid, the phase structure of the
SU5 model was analyzed by Tye and me. ' ~ ' We
found that the SU5 symmetry is restored at T
& -10' GeV and that for most values of the param-
eters there is an intermediate-temperature phase
with gauge symmetry SU4xU&, which disappears at
T-10 - GeV. Thus, grand unified models tend to
provide phase transitions which could lead to an in-
flationary scenaxio of the universe.

Grand unified models have another feature with
important cosmological consequences: They con-
tain very heavy magnetic monopoles in their parti-
cle spectrum. These monopoles are of the type
discovered by 't Hooft and Polyakov, 2 and will be
present in any model satisfying the above descrip-
tion. These monopoles typically have masses of

l & 2tcoal = 2
7 T coal

(4. 1)

By Kibble's argument, the density n„of monopoles
then obeys

3T 6
~ l'~3 + Y co81

N
P

(4. 2)

By considering the contribution to the mass density
of the present universe which could come from 10~

GeV monopoles, Preskill ' concludes that

n„/n„& 10 ~4, (4. 3)

where n, is the density of photons. This ratio
changes very little from the time of the phase
transition, so with (2. 7) one concludes

order Mx/n-10~6 GeV, where n =g /4m is the
grand unified fine structure constant. Since the
monopoles are really topologically stable knots in
the Higgs field expectation value, they do not exist
in the high-temperature phase of the theory. They
therefore come into existence during the course of
a phase transition, and the dynamics of the phase
transition is then intimately related to the mono-
pole production rate.

The problem of monopole production and the sub-
sequent annihilation of monopoles, in the context of
a second-order or weakly first-order phase transi-
tion, was analyzed by Zeldovieh and Khlopov30 and

by Preskill. ' In Preskill's analysis, which was
more specifically geared toward grand unified
models, it was found that relic monopoles would
exceed present bounds by roughly 14 orders of
magnitude. Since it gems difficult to modify the
estimated annihilation rate, one must find a scen-
ario which suppresses the production of these
monopole s.

Kibble 2 has pointed out that monopoles are pro-
duced in the course of the phase transition by the
process of bubble coalescence. The orientation of
the Higgs field inside one bubble will have no cor-
relation with that of another bubble not in contact.
When the bubbles coalesce to fill the space, it will
be impossible for the uncorrela, ted Higgs fields to
align uniformly. One expects to find topological
knots, and these knots are the monopoles. The
number of monopoles so produced is then compar-
able to the number of bubbles, to within a few or-
ders of magnitude.

Kibble's production mechanism can be used to
set a "horizon bound" on monopole production
which is valid if the phase transition does not sig-
nificantly disturb the evolution of the universe.
At the time of bubble coalescence t«„ the size l of
the bubbles cannot exceed the horizon distance at
that time. So
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] 0-24/2 qi/3

2$ (3)
(4.4)

If T,-10' GeV, this bound implies that the uni-
verse must supercool by at least about four orders
of magnitude before the phase transition is com-
pleted.

The problem of monopole production in a strongly.
first-order phase transition with supercooling was
treated in more detail by Tye and me. 6 We
showed how to explicitly calculate the bubble den-
sity in terms of the nucleation rate, and we con-
sidered the effects of the latent heat released in
the phase transition. Our conclusion was that
(4. 4) should be replaced by

T,.„&2&10" GeV, (4. 6)

V. PROBLEMS OF THE INFLATIONARY SCENARIO

As I mentioned earlier, the inflationary scenario
seems to lead to some unacceptable consequences.
It is hoped that some variation can be found which
avoids these undesirable features but maintains the
desirable ones. The problems of the model will be
discussed in more detail elsewhere, ' but for com-
pleteness I will give a brief description here.

The central problem is the difficulty in finding a
smooth ending to the period of exponential expan-
sion. Let us assume that X(t) approaches a con-
stant as t - and T -0. To achieve the desired
expansion factor Z & 10'8, one needs Xo/y4 & 10 2

[see (3. 18)], which means that the nucleation rate
is slow' compared to the expansion rate of the uni-
verse. (Explicit calculations show that &0/}t4 is
typically much smaller than this value. '8 '9 ~6) The
randomness of the bubble formation process then
leads to gross inhomogeneities.

To understand the effects of this randomness,
the reader should bear in mind the following facts.

(i} All of the latent heat released as a bubble ex-
pands is transferred initially to the walls of the

where T„„refers to the temperature just before
the release of the latent heat.

Tye and I omitted the crucial effects of the mass
density po of the false vacuum. However, our work
has one clear implication: If the nucleation rate is
sufficiently large to avoid exponential growth, then
far too many monopoles would be produced. Thus,
the monopole problem seems to also force one into
the inflationary scenario. 5

In the simplest SU5 model, the nucleation rates
have been calculated (approximately) by Weinberg
and me. ' The model contains unknown parame-
ters, so no definitive answer is possible. We do
find, however, that there is a sizable range of pa-
rameters which lead to the inflationary scenario.

bubble. This energy can be thermalized only
when the bubble walls undergo many collisions.

(ii} The de Sitter metric does not single out a co-
moving frame. The O(4, 1) invariance of the de
Sitter metric is maintained even after the forma-
tion of one bubble. The memory of the original
Robertson-Walker comoving frame is maintained
by the probability distribution of bubbles, but the
local comoving frame can be reestablished only af-
ter enough bubbles have collided.

(iii) The size of the largest bubbles will exceed
that of the smallest bubbles by roughly a factor of
Z; the range of bubble sizes is immense. The
surface energy density grows with the size of the
bubble, so the energy in the walls of the largest
bubbles can be thermalized only by colliding with
other large bubbles.

(iv) As time goes on, an arbitrarily large frac-
tion of the space will be in the new phase [see
(3. 16)). However, one can ask a more subtle
question about the region of space which is in the
new phase: Is the region composed of finite sepa-
rated clusters, or do these clusters join together
to form an infinite region& The latter possibility
is called "percolation. " It can be shown. that the
system percolates for large values of &0/Z4, but
that for sufficiently small values it does not. The
critical value of Ao/}t has not been determined,
but presumably an inflationary universe would have
a value of Xo/y be'low critical. Thus, no matter
how long one waits, the region of space in the new

phase will consist of finite clusters, each totally
surrounded by a region in the old phase.

(v) Each cluster will contain only a few of the

largest bubbles. Thus, the collisions discussed in
(iii) cannot occur.

The above statements do not quite prove that the
scenario is impossible, but these consequences
are at best very unattractive. Thus, it seems that
the scenario will become viable only if some mod-
ification can be found which avoids these inhomog-
eneities. Some vague possibilities will be men-'

tioned in the next section.
Note that the above arguments seem to rule out

the possibility that the universe was ever trapped
in a, false vacuum state, unless Xo/y4 ~ 1. Such a
large value of Xo/y does not seem likely, but it
is possible. '

VI. CONCLUSION

I have tried to convince the reader that the stan-
dard model of the very early. universe requires the
assumption of initial conditions which are very im-
plausible for two reasons:

(i) The horizon problem. Causally disconnected
regions are assumed to be near'ly identical; in par-
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ticular, they are simultaneously at the same tem-
perature.

(ii) The flatness problem. For a fixed initial
temperature, the initial value of the Hubble "con-
stant" must be fine tuned to extraordinary accura-
cy to produce a universe which is as flat as the one
we observe.

Both of these problems would disappear if the
universe supercooled by 28 or more orders of
magnitude below the critical temperature for some
phase transition. (Under such circumstances, the
universe would be growing exponentially in time. )
However, the random formation of bubbles of the
new phase seems to lead to a much too inhomoge-
neous universe.

The inhomogeneity problem would be solved if
one couM avoid the assumption that the nucleation
rate X(t) approaches a small constant Xp as the
temperature T -0. If, instead, the nucleation
rate rose sharply at some T&, then bubbles of an
approximately uniform size would suddenly fill
space as T fell to T&. Of course, the full advant-
age of the inflationary scenario is achieved only if
T, &10 "T,.

Recently Witten has suggested that the above
chain of events may in fact occur if the parameters
of the SU5 Higgs field potential are chosen to obey
the Coleman-Weinberg condition4P (i. e. , that O'V/

8&fP=O at /=0). Witten has studied this possi-
bility in detail for the case of the Weinberg-Salam
ph3se transition. Here he finds that thermal tun-
neling is totally ineffective, but instead the phase
transition is driven when the temperature of the
@CD chiral-symmetry-breaking phase transition
is reached. For the SU, case, one can hope that a
much larger amount of supercooling will be found;
however, it is difficult to see how 28 orders of
magnitude could arise.

Another physical effect which has so far been left
out of the analysis is the production of particles
due to the changing gravitational metric. 2 This
effect may become important in an exponentially
expanding universe at low temperatures.

In conclusion, the inflationary scenario seems
like a natural and simple way to eliminate both the
horizon and the flatness problems. I am publishing
this paper in the hope that it will highlight the ex-
istence of these problems and encourage others to
find- some way to avoid the undesirable features of
the inflationary scenario.
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APPENDIX: REMARKS ON THE FLATNESS

PROBLEM

This appendix is added in the hope that some
skeptics can be convinced that the flatness problem
is real. Some physicists would rebut the argument
given in Sec. I by insisting that the equations might
make sense all the way back to t=0. Then if one
fixes the value of II corresponding to some arbi-
trary temperature T„one always finds that when

the equations are extrapolated backboard in time,
Q -1 as t -0. Thus, they would argue, it is na-
tural for 0 to be very nearly equal to 1 at early
times. For physicists who take this point of view,
the flatness problem must be restated in other
terms. Since Hz and Tz have no significance, the
model universe must be specified by its conserved
quantities. In fact, the model universe is com-
pletely specified by the dimensionless constant &

=—Ip/R2T2, where k and R are parameters of the
Robertson-Walker metric, Eq. (2. 1). For our
universe, one must take lel &3&10~ . The prob-
lem then is the to explain why le l should have such
a startlingly small value.

Some physicists also take the point of view that
e=—0 is plausible enough, so to them there is no

problem. To these physicists I point out that the
universe is certainly not described exactly by a
Robertson-Walker metric. Thus it is difficult to
imagine any physical principle which would require
a parameter of that metric to be exactly equal to
zero.

In the end, I must admit that questions of plausi-
bility are not logically determinable and depend
somewhat on intuition. Thus I am sure that some
physicists will remain unconvinced that there real-
ly is a flatness problem. However, I am also sure
that many physicists agree with me that the flatness
of the universe is a peculiar situation which at
some point will admit a physical explanation.
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