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ABSTRACT
A proper test of Modified Newtonian Dynamics (MOND) in systems of non-trivial ge-
ometries depends on modelling subtle differences in several versions of its postulated
theories. This is especially important for lensing and dynamics of barely virialised
galaxy clusters with typical gravity of scale ∼ a0 ∼ 1Ås−2. The original MOND for-
mula, the classical single field modification of the Poisson equation, and the multi-field
general relativistic theory of Bekenstein (TeVeS) all lead to different predictions as we
stray from spherical symmetry. In this paper, we study a class of analytical MON-
Dian models for a system with a semi-Hernquist baryonic profile. After presenting the
analytical distribution function of the baryons in spherical limits, we develop orbits
and gravitational lensing of the models in non-spherical geometries. In particular, we
can generate a multi-centred baryonic system with a weak lensing signal resembling
that of the merging galaxy cluster 1E 0657-56 with a bullet-like light distribution.
We finally present analytical scale-free highly non-spherical models to show the subtle
differences between the single field classical MOND theory and the multi-field TeVeS
theory.
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1 INTRODUCTION

While luminous models for the central parts of galaxies do not usually require a dark matter (DM) component, massive halos
of DM must be taken into account if one wants to construct realistic potential-density pairs for an entire galaxy, in order to
reproduce the observed nearly-flat galactic rotation curves.

Curiously, there is a considerable body of evidence that the galactic mass profiles of baryonic and dark matter are not
uncorrelated (McGaugh 2005). The correlation between the Newtonian gravity of the baryons gN and the overall gravity g
(baryons plus DM) can be loosely parameterized by Milgrom’s (1983) empirical relation

µ(g/a0)g = gN, (1)

where the interpolating function µ(x) is a function which runs smoothly from µ(x) = x at x ≪ 1 to µ(x) = 1 at x ≫ 1
with a dividing gravity scale a0 ∼ 1Ås−2 at the transition. It is a very serious challenge for cold dark matter simulations to
reproduce this empirical relation. On the other hand, this relation can be interpreted as a modification of the Newton-Einstein
gravitational law in the ultra-weak field regime, with no actual need for dark matter (at the galaxy scale). This provocative
idea was taken as the basis for the MOND theory: however, using Eq.(1) alone to transform gN into g does not provide a
respectable gravitational force preserving energy and angular momentum.

Bekenstein & Milgrom (1984) then suggested modifying the Poisson Equation in order to produce a non-relativistic MOND
potential. This proposal was recently refined by Bekenstein (2004) who presented a Lorentz-covariant theory of gravity, dubbed
TeVeS, yielding MONDian behaviour in the appropriate limit. However, there is a subtle difference between the non-relativistic
formulation of MOND and the relativistic TeVeS, namely the number of fields involved: in MOND, the potential is modified
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directly in order to trigger the MOND phenomenology, while in TeVeS, a scalar field is added to the traditional Newtonian
potential. These two descriptions are equivalent only in highly symmetric systems (spherical or cylindrical symmetry). For
disk galaxies, Eq.(1) is a good approximation of the MOND and TeVeS gravitational theories since the additional curl field
(see §2) is small when solving the modified Poisson equation for the potential or the scalar field (Brada & Milgrom 1995).
For this reason, Eq.(1) has been used with confidence to fit the rotation curves of an impressive list of external galaxies with
remarkable accuracy (Sanders & McGaugh 2002). However, very little work has been carried out to study the actual effect
of the curl field in the non-relativistic MOND theory (Brada & Milgrom 1995, 1999; Ciotti, Londrillo & Nipoti 2006), while
the quantitative difference between the predictions of MOND and TeVeS has not been studied at all. The issue has become
urgent as recent evidence against MOND is largely based on multi-centred systems such as satellites of the Milky Way (Zhao
2005) and the bullet cluster of merging galaxies (Clowe et al. 2004).

In this paper, after recalling some basic formulae of MOND and TeVeS (§2), we propose a set of parametric interpolating
functions that are physical in TeVeS (§3). Then we present spherical analytical potential-density pairs for the baryon distri-
bution in early type galaxies, galactic bulges and dwarf spheroidals, valid in MOND as well as in TeVeS (§4). For this model
we work out the density, potential, circular velocity, isotropic and anisotropic distribution functions. We also show a simple
analytical expression for the gravitational bending angle. Then we present the combination of such models in multi-centred
systems for the classical MOND approximation(§5); this provides an indication of the kind of result we could expect from a
rigorous modelling of the bullet cluster of galaxies (Clowe et al. 2004). More generally, we then show how to extend those
spherical models to oblate ones (§6). In those non-spherical situations, the density corresponding to a given potential differs in
the classical MOND and in TeVeS. To illustrate this, we study the effects of the flattening of the potential in the special case of
scale-free oblate one-dimensional models (§7), and we explicitly show the subtle differences between the different theoretical
frameworks. Note that Milgrom (1994) has also suggested that MOND could have a modified inertia basis rather than a
modified gravity basis; in that case the original MOND formula is correct for circular orbits in galaxies, the theory would
become strongly non-local, the conservation laws would become unusual, and the potential-density approach used hereafter
would not apply to that framework.

2 MOND AND TEVES

In the aquadratic Lagrangian theory of MOND by Bekenstein & Milgrom (1984), the Poisson equation reads

∇.[µ∇Φ] = ∇2ΦN = 4πGρ, (2)

where µ(|∇Φ|/a0) is the same interpolating function as in Eq.(1). We then have

µ(g/a0)g = gN + ∇× H. (3)

The value of the curl field depends on the boundary conditions, but vanishes in spherical symmetry where Gauss’ theorem
applies and Eq.(1) is recovered. In realistic geometries, the curl field is non-zero but small (see Brada & Milgrom 1995, 1999;
Ciotti et al. 2006), leading to small differences when computing the rotation curves of spiral galaxies.

On the other hand, Bekenstein’s relativistic MOND (Bekenstein 2004) is a tensor-vector-scalar (TeVeS) theory: the tensor
is an Einstein metric gαβ out of which is built the usual Einstein-Hilbert action. Uα is a dynamical normalized vector field
(gαβUαUβ = −1), and φ is a dynamical scalar field. The action is the sum of the Einstein-Hilbert action for the tensor gαβ,
the matter action, the action of the vector field Uα, and the action of the scalar field φ. Einstein-like equations are obtained
for each of these fields by varying the action w.r.t. each of them.

In TeVeS, the physical metric near a quasi-static galaxy is given by the same metric as in General Relativity, with the
Newtonian potential ΦN replaced by the total potential

Φ = ΞΦN + φ, (4)

where Ξ ≃ 1. This means that the scalar field φ plays the role of the dark matter gravitational potential. The Einstein-like
equation for the scalar field relates it to the Newtonian potential ΦN (generated by the baryonic density ρ) through the
equation

∇.[µs∇φ] = ∇2ΦN = 4πGρ, (5)

where µs is a function of the scalar field strength gs = |∇φ|, and derives from a free function in the action of the scalar field.

3 THE INTERPOLATING FUNCTIONS

In spherical symmetry, we have

µsgs = µ(gs + gN) = gN , (6)

where µ is the interpolating function of MOND, thus related to µs by

µs =
µ

1 − µ
. (7)
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The standard interpolating function that has been used for twenty years to fit the rotation curves with Eq.(1) is

µ(x) =
x√

1 + x2
. (8)

However, Zhao & Famaey (2006) have shown that this function, or rather the corresponding function µs derived from Eq.(7),
is not physical in the framework of TeVeS; the function µs is multi-valued. For this reason, we will use hereafter a parametric
set of interpolating functions that are physical in TeVeS:

µ(x) =
2x

1 + (2 − α)x +
√

(1 − αx)2 + 4x
, 0 ≤ α ≤ 1, (9)

where x = g/a0. The corresponding scalar field functions are

µs(s) =
s

1 − αs
, (10)

where s = gs/a0. The α = 0 case corresponds to the toy model proposed by Bekenstein (2004) in weak and intermediate
gravity. Under the approximation of Eq.(1), the α = 1 model has been shown by Famaey & Binney (2005) and Zhao &
Famaey (2006) to be a better fit to the rotation curves of galaxies than the α = 0 case. The values 0 < α < 1 have not yet
been explored in real galaxies, and will be the subject of another paper (Famaey, Gentile & Zhao 2006, in preparation).

These functions µ and µs will lead to the same gravitational behaviour in spherical symmetry. However, note that Eq.(7)
is not valid in a more general geometry: the Newtonian force, the MOND force of Bekenstein & Milgrom (1984) and the TeVeS
force are no longer parallel. The curl field obtained when solving the equation for the scalar field φ (Eq. 5) will be different
than the one obtained when solving for the full Φ in Eq.(2). This will be illustrated in §7.

4 SPHERICAL POTENTIAL-DENSITY PAIRS IN MOND/TEVES

In this section, we consider only the α = 1 case, known to yield excellent fits to the rotation curves of galaxies. Potential-
density pairs (e.g., Hernquist 1990, Dehnen 1993, Zhao 1995) have long been acknowledged to be very useful in model building
and in checking numerical simulations. It is even more interesting to find simple spherical and non-spherical models in MOND
and TeVeS. We explore a spherical model with a scalar field of the form

φ(r) = v2
0 ln

(

1 +
r

(p + 1)r0

)

, (11)

where p is a dimensionless number, and

r0 ≡ v2
0

a0
, v2

0 =
√

GM0a0. (12)

Then we have, according to the equation for the scalar field (Eq. 5), that

ρ(r) =
M0

[

rh(r + rh) − r2
0/4

]

2πr [(r + rh)2 − r2
0/4]

2
, rh = (p +

1

2
)r0 (13)

The density profile is shown for p=0.5 and 2.0 in Fig.1. This MONDian density distribution is realistic: the model mimics the
Sersic profile of an elliptical galaxy. It also mimics a Hernquist (1990) model with scalelength rh:

ρh(r) =
M0rh

2πr(r + rh)3
. (14)

We can then also easily derive gs = v2
0/(r + r0 + pr0), and from Eq.(6) calculate the Newtonian and total potential of the

model:

ΦN (r) = Φ − φ(r), Φ(r) = v2
0 ln

(

1 +
r

pr0

)

. (15)

Thus, for the gravity we have

g(r) =
V 2

c

r
=

v2
0

r + pr0
. (16)

The corresponding matter density (baryons + DM) in the Newtonian framework is

ρ(r) + ρDM(r) =
M0(1 + 2pr0

r
)

4πr0(pr0 + r)2
. (17)

The asymptotic circular velocity is v0, and the maximum gravity g0 occurs at small r (near the origin), where g(r) =
v2

0

pr0

= a0

p

(note that in the flattened models of §7 g0 will be related to p by g0 = a0

p
). Given this, it is interesting to show the spherical

model with p=0.5 and 2.0, hence the intermediate gravity range g0 = 2a0 and a0/2 (Figs. 1-4). Most bulges and ellipticals,
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Figure 1. Shows the density of Eq.(13) for p=0.5 and 2.0. r0 and v2
0 are taken to be unity, and G=0.00442 in all following plots unless

stated otherwise. Overplotted is a Hernquist density profile (cf. Eq. 14) for p=0.5 and 2.0. It shadows the curve for p=2 from our density
profile extremely well, but there is a slight deviation between the p=0.5 curves.

gravitational lenses and galaxy clusters should go through this intermediate regime, while dwarf spheroidal galaxies have very
low g0/a0 = 1

p
. Although a detailed fit to observed light profile is beyond the scope of the present paper, we will show an

application in galaxy clusters in §5.

4.1 The baryonic distribution function

It is interesting to ask if the MONDian potential-density pairs presented in the previous section can be realised by some
equilibrium configurations described by certain baryonic distribution functions self-consistently. This can be done in exactly
the same way as in Newtonian gravity. This is particularly simple for a system with constant radial anisotropy such that the
radial velocity dispersion σr is related to the tangential dispersions by σ2

r = 2σ2
θ = 2σ2

φ. In this case the baryonic phase-space
distribution F for the distribution function must take the form:

F (E,L) =
A(E)

4πL
, A(E) ≡ −d(rρ)

dΦ

∣

∣

∣

∣

Φ=E

. (18)

Knowing from Eq.(15) that

r(Φ) = pr0

(

exp
Φ

v2
0

− 1

)

, (19)

we obtain

F (E,L) =
M0

16π2r2
0v

2
0L

Λ3
(

2Λ2 + (6p + 1)Λ + 3p(2p + 1)
)

p(p + Λ)3
, Λ = exp

−E

v2
0

. (20)

For this radially anisotropic model we can calculate the radial velocity dispersion by solving the Jeans equation as done
for Newtonian system (e.g., Angus & Zhao 2006)

2σ2
θ = 2σ2

φ = σ2
r(r) =

1

rρ

∫

∞

r

V 2
c ρdr. (21)

Substitute in the expression for the circular velocity Vc we have

σ2
r(r) = v2

0
(s2 − 1)2

4(2p + 1)s − 4

[

(
p

2
+ 1)

(

ln
s − 1

s + 1
+

2

s + 1

)

+
2

s2 − 1
+

p

(s − 1)2

]

(22)

where s ≡ 1+2p+ 2r
r0

. A likewise expression can be found by calculating the moments from the distribution function F (E, L).
An interesting feature of this model is that it has nearly isothermal velocity dispersions everywhere for any value of the

parameter p. Fig.(2) shows σr(r) for the two limiting cases of p = 0 and p = ∞. To understand this note that at large
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Figure 2. Shows the radial velocity dispersion of anistropic model given by Eq.(22) for the limiting cases p=0 and p=∞. Here v0 and
r0 are unity.
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Figure 3. Shows the anisotropic distribution function from Eq.(20) at L = 1 for p=0.5 and 2.0

radii ρ ∼ r−4, Vc → v0 and σ2
r → v2

0

3
. At small radii, rρ → cst, and σ2

r(0) = (p + 1)v2
0

[

3/4 + p/2 + p(p/2 + 1) ln p
p+1

]

=

0.75v2
0 , 0.470v2

0 , 0.421v2
0 , 0.383v2

0 , 0.333v2
0 for p = 0, 0.5, 1, 2,∞. So for all plausible values of p, σ2

r is very comparable at the
center and at large radii. The anisotropic distribution function as a function of E is presented in Fig.(3) for p = 0.5 and p=
2.0. We can also numerically integrate the isotropic distribution function via Eddington’s equation (see appendix and Fig.4).

4.2 Gravitational lensing

Light bending in TeVeS works very much like in General Relativity. For a ray of impact parameter R from the spherical lens,
the bending angle θ is given (cf. Zhao, Bacon, Taylor, Horne 2006) by the following integration along the line of sight

θ(R) =

∫ +∞

−∞

2g⊥dz

c2
, g⊥(R, z) = g(r)

R

r
, (23)

where g⊥(R, z) is the gravity perpendicular to the line of sight, and g(r) is the centripetal gravity at radius r =
√

R2 + z2.
Using the expression for g(r) from our model (Eq. 16), we find that the deflection angle is given by

θ(R) =



















8v2

0

c2
√

1−y−2
arctan

√

y−1
y+1

when y ≡ R
pr0

> 1

4v2

0

c2
when y ≡ R

pr0
= 1

8v2

0

c2
√

y−2−1
tanh−1

√

1−y
y+1

when y ≡ R
pr0

< 1

(24)
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Figure 4. Shows the isotropic distribution function derived in the appendix for p=0.5 and 2.0.
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Figure 5. Shows the bending angle θ in arcseconds as a function of impact parameter R and the circular speed Vc in 102 kms−1 for
pr0=0.5Mpc and v0=949 km s−1.

Fig.5 shows the predicted bending angle as function of the impact parameter R; cases are shown for p = 0.5 and 2.0. The
bending angle increases with the impact parameter and starts to level off beyond R = pr0. This is consistent with the
expectation of a flat rotation curve at large radii (Fig. 5). Given the distance to the lens Dl, the distance to the source Ds

and the lens-source distance Dls we can define an effective distance as Deff = DlDls/Ds. Using this we can compute the
convergence κ and the tangential shear γ from

κ(R) =
θDeff

R
− γ(R)

=
R2 − 2(pr0)

2

2R2 − 2(pr0)2
(θ − θ(pr0))Deff

R
, (25)

and they are plotted for a toy cluster in Fig.(6).



Can MOND take a bullet? Analytical comparisons of three versions of MOND beyond spherical symmetry 7

10
4

10
5

10
6

10
−2

10
−1

R (pc)

kappa(R) 

gamma(R) 

Figure 6. Shows the convergence κ and tangential shear γ for a toy cluster at an effective distance Deff=400Mpc with v0=949 km s−1

and pr0=0.5Mpc.
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Figure 7. Shows contours of a double-centred (panel a) and a triple-centred (panel b) analytical model for the potential Φ (dashed red
lower) and projected lensing convergence κ (thick blue shaded lower) of a system resembling the bullet cluster (Clowe et al. 2004). Also
shown are contours (spaced in 0.5 dex, in internals of factor of two) the matter volume density in Einstein-Newton gravity (upper thin
black) and baryonic matter volume density in the classical MOND approximation (upper shaded zones). Note a density minimum for
’MONDian’ baryons at (0,0) in panel (a), and a density maximum in panel (b) where the baryons are primarily in a disky component in
the middle.

5 MULTI-CENTRED POTENTIALS AND THE MERGING BULLET CLUSTER

An obvious way of obtaining flattened models is to consider a double-centred potential, whose axis of symmetry is perpendicular
to the line of sight, i.e., a merging system viewed edge-on. In a cartesian coordinate system (x, y, z), if the two centres are
located at (−x0, 0, 0) and (x0, 0, 0), then the double-centred potential can be written as

Φdc(x, y, z) =
Φ(r1)

2
+

Φ(r2)

2
, (26)
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where r1 =
√

(x + x0)2 + y2 + z2, r2 =
√

(x − x0)2 + y2 + z2, and Φ is the spherical potential of Eq.(16). Here we have simply
added two spherical analytical potentials. For example, to mimic a merging galaxy cluster we set p = 2, x0 = pr0 = 0.5Mpc,
v0 = 949 km/s, and M0 = 5.21 × 1013M⊙.

The gravitational field of such a model is easily computed by the simple superposition of two spherical fields, i.e.,

g = − v2
0

r1 + pr0

r1

2r1
− v2

0

r2 + pr0

r2

2r2
. (27)

Likewise the light bending angle vector is the superposition of the bending angle vectors of two spherical models, so its x and
y direction components are respectively
{

θdcx(x, y)= (x+x0)θ(R1)
2R1

+ (x−x0)θ(R2)
2R2

θdcy(x, y)= yθ(R1)
2R1

+ yθ(R2)
2R2

,
(28)

where R1 =
√

(x + x0)2 + y2, R2 =
√

(x − x0)2 + y2, and θ is the spherical bending angle of Eq.(24). From there we can
estimate the projected lensing convergence

κ(x, y) =
1

2
Deff

(

∂θdcx

∂x
+

∂θdcy

∂y

)

=
κ(R1)

2
+

κ(R2)

2
, (29)

where κ(R) is given by Eq.(25) for spherical systems. Assuming Deff = 400Mpc, the resulting convergence contours are plotted
on Fig. 7(a). This map resembles the convergence map derived from the weak lensing shear field around the merging bullet
cluster 1E 0657+56 (Clowe et al. 2004).

So far the result does not differ from Einsteinian gravity. The difference is in the underlying matter distribution. In
Einsteinian gravity, the convergence map is simply proportional to the surface density map, and the volume density of matter
is the simple addition of two spherical models each with density given in Eq.(17). As we can see from Fig.7 there is a one-to-one
relation between features in the convergence map and the features in the matter (dark plus baryons) distribution if the gravity
is Einsteinian, i.e., what we see in lensing is what we have.

The situation in MOND/TeVeS is different. In order to properly derive the corresponding density in TeVeS, one would
need to know what part of the double-centred potential is due to the scalar field. This will be done in the limiting case of
scale-free flattened models in §7. Here we use the classical MOND approximation. From the gravity or the potential we can
then directly calculate the corresponding baryonic isodensity contours using Eq.(2) and Eq.(9) with α = 1. The MONDian
baryonic matter has a rich structure. Fig.7(a) shows that at the centre (x = 0, y = 0) the MONDian volume density reaches a
local minimum while the convergence map shows a saddle point. This cautions against a naive deprojection of the convergence
map in MOND/TeVeS.

5.1 Triple-centred baryonic system and the bullet cluster 1E 0657+56

In the case of the bullet cluster, there are three baryonic mass concentrations. Clowe et al. (2004) argue that the bulk of
baryonic mass is in the form of X-ray gas, which is shocked and displaced from the two optical centres of the colliding binary
cluster. It was argued that lensing in any MONDian theory should produce shear maps centred on the dominating X-ray gas
instead of the lesser baryonic mass responsible for the optical light. The fact that the convergence map coincides with the
two optical centres is presented as direct evidence for the presence of collisionless dark matter, unaffected by the shock, and
respecting the optical centres.

Of course, this is not so surprising since it is well known that MOND still needs an unseen matter component in galaxy
clusters (Sanders 2003). But, in the case of the bullet, a key element of the line of reasoning is that the geometry of the lensing
map in TeVeS reflects the underlying baryons even in highly non-spherical geometries. To illustrate the range of possibilities
in triple-centred systems, let us consider the following potential

Φtc(x, y, z) = [k1 + (1 − k1 − k2)H(x)]Φ(r1) + [k2 + (1 − k1 − k2)H(−x)]Φ(r2). (30)

The terms involving the Heaviside-function create the effect of a razor thin disk at x = 0 (reminiscent of the well-known
Kuzmin disk), with a sudden change of gravity in the x-direction at the midplane x = 0. The potential is continuous across
the x = 0 plane. The deflection angle and convergence map remain those of the superposition of two spherical deflectors,
although there is now a sudden change in the weighting of the two deflectors as one crosses the midplane x = 0. Finally one
can apply the MONDian Poisson equation (Eq. 2) to derive the baryonic density.

Here we choose k1 = k2 = 0.2 so that we have a prominent baryonic component in between the two cluster centres.
Fig.7(b) shows a rather regular looking convergence map, but a complex MONDian baryonic density distribution, somewhat
resembling that of the bullet cluster. In particular, there is now a ridge of matter centred on x = 0 and two irregular baryonic
components more or less centred on the x = ±x0. This example provides evidence that a regular-looking convergence map is
not incompatible with a MONDian multi-centred baryonic mass distribution.

As argued in Zhao, Bacon, Taylor & Horne (2006) and Zhao & Qin (2006) the convergence κ can be non-zero where there
is no projected matter in MOND/TeVeS, something that is not possible in Einsteinian gravity. This implies that a lensing
convergence map does not simply translate a baryonic surface density map in MOND. Our models here show the range of
non-trivial baryonic geometries for multi-centred potentials in MOND. Although the models here are of only indicative value
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Figure 8. Shows a flattened non-scale-free potential with g0 = a0/2 (p=2), ǫ=0.25, upper panel shading showing density contours (for
α = 1), bottom dashed showing Hernquist density profile (cf. Eq. 14) with axis ratio 2/3.

(as the approximation of classical MOND has been used, see §7 for typical differences with TeVeS) it does caution drawing
conclusions about TeVeS before performing a careful lensing analysis of the bullet cluster (Clowe et al. 2004) in the framework
of TeVeS.

6 FLATTENED POTENTIALS AND ORBITS

The spherical potential of §4 can also be generalised into a flattened or triaxial potential. For example, we can consider a
model with an axisymmetric potential

Φ(r, θ) =
v2
0

2
ln

[

(

1 +
r

pr0

)2

+ 2ǫ
r

pr0
cos2 θ

]

(31)

where θ is the angle with the z-axis: ǫ > 0 corresponds to an oblate potential and ǫ < 0 to a prolate potential.
The corresponding density in the classical MOND of Bekenstein & Milgrom (1984) can be calculated by feeding this

potential into the modified Poisson equation (Eq. 2) in spherical coordinates:

4πGρ(r, θ) =
∂

r2∂r

µ∂Φ

∂r
+

∂

r2 sin θ∂θ

µ sin θ∂Φ

∂θ
. (32)

The expression for ρ can be obtained analytically, but the general expression is too tedious to be given here. Nevertheless we
can calculate orbits in this potential numerically. The stars in this flattened MOND potential are typically on loop orbits as
in a flattened Newtonian potential (Fig. 8). We shall concentrate hereafter on a limiting case of this flattened model, in order
to compare the predictions of the classical MOND gravity and of TeVeS.

7 SCALE-FREE FLATTENED MODELS: MULTI-FIELD THEORY VS. ONE-FIELD THEORY

In the limit r/pr0 → 0, the previous potential reduces to a scale-free form when expanding Eq.(31). We shall now consider
such models with a total potential

Φ(r, θ) = rgr(cos θ), where gr(c) = (1 + ǫc2)g0, (33)

and for convenience we define

c ≡ cosθ. (34)

Clearly, g0 = v2
0/pr0 is thus the gravity along the major axis in the c = 0 (or θ = π/2) plane, and the parameter ǫ leads to

flattening (ǫ = 0 reduces to the spherical case). The parameter g0 is NOT the acceleration constant a0 of MOND, but is a
parameter of the model linked to it through the definitions (see Eq. 12) of v0 and r0 (g0 = a0/p).
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This class of scale-free models corresponds to flattened galactic bulges, ellipticals, dwarf spheroidal galaxies, or centre
of galaxy clusters depending on the value of the equatorial gravity g0. The radius-independent gravitational force in these
models is:

g(c) = ∇Φ(r, θ) = gr(c)r̂ + gθ(c)θ̂, (35)

where gθ(c) = (1 − c2)1/2
(

dgr

dc

)

= 2cǫg0(1 − c2)1/2. (36)

The amplitude of gravity g is defined as

g(c) = [gr(c)
2 + gθ(c)

2]1/2. (37)

We are now going to explore the density corresponding to this potential in four different frameworks: (i) Newtonian
gravity where the computed density corresponds to the baryonic and DM distribution, (ii) classical one-field MOND gravity
(Bekenstein & Milgrom 1984, approximation used in §5), (iii) TeVeS multi-field theory, (iv) original MOND formula (Eq. 1)
approximation.1

For the first time in the literature, we provide here a quantitative comparison of the three ways of describing the
MOND phenomenology without invoking DM (and of Newtonian gravity with DM), by comparing the underlying density
corresponding to the potential of Eq.(33).

7.1 Newtonian gravity with dark matter

Assuming Newtonian gravity, the density (corresponding to the stellar and dark densities) is

ρ(r, θ) = (4πG)−1∇2Φ(r, θ) = (4πGr)−1L(c), (38)

where L(c) = 2gr(c) +
d

dc
[(1 − c2)g′

r(c)] = L[gr(c)] = 2(1 + ǫ)g0 − 4ǫg0c
2, (39)

We have defined the differential operator L = 2+ d
dc

(1+c2) d
dc

. This toy model has a r−1 cusp, a rising rotation curve V ∝ √
r,

and M(r) ∝ r2 (similar to uniform disks).

7.2 One-field MOND gravity

Now, assuming a classical MOND gravity (as we did in §5) with an interpolating function µ(g), the underlying (purely
baryonic) density can be computed from

ρM (r, θ) = (4πG)−1∇.(µ∇Φ(r, θ)) = (4πGr)−1LM (c), (40)

where LM (c) = µ(g)L(c) + (1 − c2)
dµ(g)

dc

dgr

dc
, (41)

where L(c) is given by Eq.(39) and µ(g) by Eq.(9) with g as in Eq.(37). This baryonic density ρM (r, θ) is compared with
the baryonic+DM density of a Newtonian model with the same potential in Fig.9, for different values of g0 and different
interpolating functions.

7.3 Multi-field TeVeS gravity

To compute the baryonic density in §5 when making a toy model of the bullet cluster, we used the one-field MOND gravity.
We are now going to show the differences that could be expected when using the multi-field TeVeS instead. The problem in
that case is that we must find the relative contribution of the scalar field and of the Newtonian potential to the total potential
before computing the underlying baryonic density.

Assuming a multi-field gravity (see Eqs. 4 and 5) with a scalar field φ and a Newtonian potential ΦN = Φ − φ, we have
that the scalar field can be written in the form

φ(r, θ) = rgs,r(cos θ), where gs,r(c) = gr(c) − gn,r(c) = g0(1 + ǫc2) − gn,r(c), (42)

where gn,r and gs,r are respectively the Newtonian gravity in the r̂ direction and the scalar field strength in the r̂ direction,
both generated by the common density distribution we are looking for, ρs(r, θ).

The total scalar field strength is

gs(c) = |∇φ(r, θ)| = (g2
s,r(c) + g2

s,θ(c))
1/2, where gs,θ = (1 − c2)1/2

(

dgs,r

dc

)

. (43)

1 In a flattened system, Eq.(1) does not derive from a proper theory of gravity (energy is generally not conserved). The only way to
precisely recover it is to consider purely circular orbits in axisymmetric systems for non-relativistic modified inertia toy models (see
Milgrom 1994). In a flattened system, the corresponding formula for the classical one-field MOND gravity will differ from Eq.(1) by a
curl-field term (Eq. 3), while this curl-field will only affect the scalar field in TeVeS.
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Table 1. Shows the correction to the rotation curve due to the curl field for six α’s (cf. Eq. 9) and for three representative gravity
strengths (g0 = a0/2, a0 and 2a0). ǫ = 0.8.

g0 → a0/2 a0 2a0

α ↓ ∆s ∆M ∆s − ∆M ∆s ∆M ∆s − ∆M ∆s ∆M ∆s − ∆M

0.0 0.889 -0.782 1.671 -0.562 0.537 -1.100 -0.307 -0.223 -0.084
0.2 -0.044 -0.032 -0.011 0.525 -1.130 1.654 -0.648 1.375 -2.024
0.4 3.001 -1.627 4.628 -0.197 -0.123 -0.073 -0.807 5.808 -6.616
0.6 1.002 -0.895 1.898 -0.564 1.167 -1.731 -0.608 -0.334 -0.274
0.8 0.002 0.002 0.000 0.007 -1.238 1.244 -0.731 -7.074 6.343

1.0 -0.114 -1.985 1.871 -0.255 -0.102 -0.152 -0.820 -2.132 1.311

The baryon density is then given by both the scalar and Newtonian Poisson equations:

ρs(r, θ) = (4πGr)−1{µsL[gs,r(c)] + (1 − c2)
dµs(gs)

dc

dgs,r

dc
}, (44)

and

ρs(r, θ) = (4πGr)−1L[gr(c) − gs,r(c)] (45)

Combining the above two equations, we use the numerical relaxation method to solve the following second-order ODE for
gs,r(c):

[1 + µs]L[gs,r(c)] + (1 − c2)
dµs(gs)

dc

dgs,r

dc
= L(c). (46)

We set the boundary conditions such that the solution is regular at c = ±1. From this we derive the baryonic density ρs(r, θ).
We plot the equal density contours predicted from the three theories for a model with g0 = a0/2 and 2a0, α=0.0 and 1.0

and ǫ=0.8 in Fig.9. Note that some of the models have an unphysical heart-shaped density distribution. This doesn’t prevent
us comparing them in order to show the differences between the different formulations of MONDian modified gravity theories.

7.4 MOND formula approximation

In the case of the multi-field TeVeS gravity, if one subtracts the true gravity g0 in the equatorial plane from the one that we
would derive when applying Eq.(1) to the Newton-Einstein gravity, we obtain the correction to the rotation curve due to the
curl field:

∆s =
gs,r(0)

(

1 +
gs,r(0)

1−αgs,r(0)

)

− g0

g0
. (47)

When this number is negative, the true MOND force is larger than the one derived using Eq.(1), while the opposite is true
when this number is positive.

In the case of the one-field MOND gravity, the actual Newtonian gravitational force gN(c) can be calculated by solving
the Newtonian Poisson equation for the density ρM (r, θ). Then, replacing gs,r(0) by g0 − gN (0) in Eq.(47) yields ∆M , the
correction to the rotation curve due to the curl field in the non-relativistic MOND. Although the two values do not correspond
to the same mass density, the relatively large values of the difference imply non-negligible differences. Those values are listed in
Table 1 for three different values of g0 (a0/2, a0, 2a0), corresponding to the intermediate gravity regime, and for many different
interpolating functions. We thus showed that it is necessary to do rigourous calculations using the scalar field prescription if
one wants to address the intermediate regime quantitatively in complex geometries.

8 CONCLUSION

In summary, we have presented analytical models of dynamics and lensing in MOND/TeVeS.

1. We proposed (§3) a useful set of interpolating functions for MOND, with a physical counterpart in TeVeS, con-
trary to the standard interpolating function commonly used to fit galactic rotation curves.

2. Using our interpolating functions, we found a useful family of spherical (§4) models in MOND/TeVeS, with mod-
erate 1/r cusps. Those models were then extended to non-spherical ones, by considering multi-centred models (§5), flattened
models (§6) and scale-free flattened models (§7).
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(a) (b)

(c) (d)

Figure 9. Shows isopotentials (dotted line) for the potential of Eq.(33), for 2 values of the equatorial gravity g0 (g0 = a0/2 and g0 = 2a0),
and 2 values of α (see Eq.(9)). The full black line corresponds to isodensity contours in Newtonian gravity (baryons+DM). The dashed
line corresponds to baryonic isodensities for the one-field MOND and the dot-dashed line to the baryonic isodensities for the multi-field
TeVeS. For the same potential, the typical density in TeVeS is slightly higher than in MOND near the centre, and slightly lower in the
outskirts.

3. We showed that the lensing and the orbits in these spherical or flattened models are rather similar to the expec-
tation in Einstein-Newton gravity, but still trigger a few surprises in extreme geometries. In multi-centred models, the
convergence map does not always reflect the projected matter in the lens plane in MOND. This cautions simple interpretations
of the analysis of weak lensing in the bullet cluster 1E 0657-56 (Clowe et al. 2004, see Fig. 7).

4. In flattened scale-free models (§7) we also found that there are differences in the potential-density pairs between
the single-field MOND formulation of Bekenstein & Milgrom (1984) and the multi-field TeVeS formulation (Bekenstein 2004).
However, the differences are probably not sufficient to solve the MONDian mass discrepancy in galaxy clusters (Sanders
2003) as suggested by Bekenstein (2005), unless other parameters of the TeVeS theory, e.g., Ξ (see Eq. 4), are important.
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Note that our results are not inconsistent with the well-known result that rotation curves of astronomical disks are
insensitive to the detailed formulation of MOND. While the very squashed axisymmetric systems of §7 are not very realistic
by themselves, they seem to suggest that the three versions of MOND are likely to show greater differences in systems
of complex multi-centred geometry, which is realistic for systems undergoing mergers. 2 Altogether we would argue that
the most promising systems to test different versions of MOND are systems of lower symmetry for which MOND was not
designed and the least is known. We have shown here that application of this test requires highly non-trivial computation to
be done properly.
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APPENDIX A: ISOTROPIC DISTRIBUTION FUNCTION

Here we present the full isotropic distribution function corresponding to the models of §4. We start from the Eddington’s
formula (see Binney & Tremaine 1987)

F (E) =
1√
8π2

[
∫

∞

E

d2ρ

dΦ2

dΦ√
Φ − E

+
1√

Φ − E

(

dρ

dΦ

)

Φ=∞

]

. (A1)

Initially we define ρ as a function of Φ

ρ(Φ) =
M0λ

2((2p + 1)λ−1 + 1)

4πp2r3
0(λ

−1 − 1)(pλ−1 + 1)2
, λ = exp

−Φ

v2
0

. (A2)

The first derivative of ρ w.r.t. Φ is

2πr3
0v

2
0

M0

dρ

dΦ
=

−2p(2p + 1)λ−1 + (3p2 − 3p − 1) + (3p − 1)λ + λ2

(λ−1 − 1)2(pλ−1 + 1)3
. (A3)

Evaluated at Φ = ∞ we get dρ
dΦ

|Φ=∞ = 0. The second derivative w.r.t. Φ is

2πv4
0r3

0

M0

d2ρ

dΦ2
=

8p2(2p + 1)λ−3 + p(−23p2 + 15p + 7)λ−2 + (9p3 − 29p2 + 11p + 2)λ−1 + (12p2 − 20p + 3) + (8p − 5)λ + 2λ2

p2(λ−1 − 1)3(pλ−1 + 1)4
.(A4)

The reduced Eddington’s formula

2 For example, satellites in the tidal field of a galaxy have interesting Roche lobe shapes, which contain detailed information on the
different laws of gravity (Zhao & Tian, 2006).

http://arXiv.org/abs/astro-ph/0412652
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F (E) =
1√
8π2

[
∫

∞

E

d2ρ

dΦ2

dΦ√
Φ − E

]

. (A5)

can now easily be numerically integrated as shown in Fig.(4). This paper has been typeset from a TEX/ LATEX file prepared

by the author.
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