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Abstract

Gravitational lensing in a modified gravity (MOG) is derived and shown
to describe lensing without postulating dark matter. The recent data for
merging clusters identified with the interacting cluster 1E0657-56 is shown to
be consistent with a weak lensing construction based on MOG without exotic
dark matter.
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1 Introduction

A relativistic modified gravity (MOG) theory [I, 2] has been proposed to explain
the rotational velocity curves of galaxies and the X-ray data for clusters of galaxies
with a modified Newtonian acceleration law, without non-baryonic dark matter. A
fitting routine for galaxy rotation curves has been used to fit a large number of
galaxy rotational velocity curve data, including low surface brightness (LSB), high
surface brightness (HSB), dwarf galaxies and elliptical galaxies with both photo-
metric data and a two-parameter core model without non-baryonic dark matter 3.
The fits to the data are remarkably good and for the photometric data only the one
parameter, the mass-to-light ratio (M/L), is used for the fitting, once two param-
eters are universally fixed for galaxies and dwarf galaxies. A large sample of mass
profile X-ray cluster data has also been fitted ] without dark matter. It has been
shown that MOG can fit the Cosmic Microwave Background acoustical oscillation
peaks data in the power spectrum without dark matter and provide an explanation
for the accelerated expansion of the universe [2].

The MOG requires that Newton’s constant G, the coupling constant w that
measures the strength of the coupling of a skew field to matter, and the mass p of
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the skew field vary with distance and time, so that agreement with the solar system
and the binary pulsar PSR 1913+16 data can be achieved, as well as fits to galaxy
rotation curve data and galaxy cluster data. In MOG [}, 2], the action contains
the Einstein-Hilbert action based on a symmetric pseudo-Riemannian metric, an
action formed from a vector field ¢, called the phion field which produces a “fifth”
force skew field, and an action for scalar fields that leads to effective field equations
describing the variations of G, w and pu.

In the following, we shall investigate the gravitational lensing in MOG. The vari-
ation of G leads to a consistent description of relativistic lensing effects for galaxies
without non-baryonic dark matter. We study the weak gravitational lensing of the
merging, interactive cluster 1E0657-56 at a redshift z = 0.296 that has recently
been claimed to enable a direct detection of dark matter, without alternative grav-
itational theories [6, 7, 8. We will show that the lensing of distant background
galaxies predicted by MOG is consistent with the data from the interacting cluster
1E0657-56.

2 Lensing Deflection of Light Rays

In relativistic MOG massless photons move along null geodesics [II, 2]:
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where I',; denotes the Christoffel symbol. The relativistic deflection of light for a
point mass in MOG is given by
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where «(0) is the reduced bending angle, which relates the angular position of its
image, 0, via the equation, 6, = 6 + «(6) with 65 denoting the angular position of
the source. Moreover, 0 denotes the Einstein radius of the lens [5]:
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where G is the varying gravitational constant in MOG, M is the mass of the deflector,
and D,,, Dy and D;, are the angular diameter distances from observer to source,
observer to lens, and lens to source, respectively. In a cosmological model, the results
obtained from MOG are not strongly dependent on the distance measurements.

Mortlock and Turner [9] have proposed a generic, parameterized point-mass de-
flection law for the weak lensing of galaxies:

a¥) = _%(eﬁe)w’ @

2



which is equivalent to the general relativity (GR) Schwarzschild law for § < 6y, but
falls off as () oc 0*¢ for § > 6. For £ < 0 the deflection angle increases with
impact parameter R and ¢ = 1 for GR. For galaxy-galaxy weak lensing, Mortlock
and Turner [9] found that the full Sloan Digital Sky Survey (SDSS) data constrain
the deflection angle to be a(R) oc R*'*%! for 50kpc < R < 1 Mpc. This shows that
for galaxy-galaxy weak lensing the gravitational constant does not vary significantly
with the impact parameter R.
The deflection angle formula can be written:

_ 0—22 / Z dla, (1), (5)

where 7 denotes the radial polar coordinate for a spherically symmetric body, ¢ is
the distance along the ray path and r = /¢2 + R%. Moreover,

a,(r) =a(r)—, (6)

is the gravitational acceleration perpendicular to the direction of the photon at a
distance of closest approach R from the source and

a(r) = -, (7)
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where ® denotes the gravitational potential with |®| < 2.

deflection angle as

We can express the
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The metric line element is given for weak gravitational fields by

(8)

dr? = exp(2®/c®)dt* — exp(—2®/c*)d(?, 9)
where
dl* = dr? + r*(d6* + sin® 0do?). (10)
The time delay of a light ray is

/ dl exp(—2®/c?) (/ dﬁ——/é dE(I)), (11)

where fy, denotes the distance from observer to source. The deflection angle 6
obtained from Eq.(H]) is twice the deflection angle experienced by a massive particle
moving with the speed of light [T0].

In MOG the acceleration on a test particle is given by [I]:

a(r) = do(r) _ _M, (12)




where G(r) is the effective varying gravitational “constant”:

G(r) = G|+ a(r)(1 = exp(=r/A) (14 ﬁ)] (13)
Here, Gy denotes Newton’s gravitational constant and a(r) and A(r) denote, re-
spectively, the “running” coupling strength and range of the vector “phion” field in
MOG. We have for r — oo that G, — Gy (1 + ), while G(r) - Gy as r — 0.
The geometry of a spherical lens at a redshift z = z; bends the light ray from
a source at redshift z = z;. The source is offset from the lens by an angle 6, and
forms an image at an angle 6, which is related to the length R by § = R/D,;. The
spherical symmetry of the lens means that the line of sight to the lens, source and
image lie in the same plane. The lens equation is
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The convergence k and shear v are defined by
K= ogag@R), 7 =ln =5, (15)
where 5 0
k= /0 d6(0x) (16)

is the mean convergence within a circular radius.

3 Cluster Lensing and the Lensing of Merging
Clusters

Weak gravitational lensing is a method that can be employed to measure the surface
mass in a region by using the fact that a light ray passing a gravitational potential
will be bent by the potential. Images of background galaxies that are near a massive
cluster of galaxies are deflected away from the cluster and enlarged while preserving
the surface brightness. The images are distorted tangentially to the center of the
gravitational potential and produce a shear 7y, causing the background galaxies’
ellipticities to deviate from an isotropic distribution; the magnitude and direction of
these deviations can be used to measure the mass of the cluster causing the lensing.
No assumptions need be made about the dynamical state of the cluster mass.

The measured shear can be converted into a measurement of the convergence k,
which is related to the surface density of the lens ¥ by the equation:

K(R) = (17)




where Y. (R) is a scaling factor in MOG:
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Here, D™ = Dy, /(DyD)s) and we have explicitly included the variation of G' with
the impact parameter R.

A weak lensing reconstruction of the interacting cluster 1E0657-56 shows that
a smaller cluster has undergone in-fall and passed through a primary cluster. The
interacting cluster has previously been identified in optical and X-ray surveys [0, [7, §
using the Chandra X-ray Observatory. During the merger of the two clusters of
galaxies, the X-ray gas has been separated from the galaxies by ram-pressure and
is observed to be off-set from the center of the interacting cluster. The merger is
occurring approximately in the plane of the sky and the cluster cores passed though
each other ~ 100 Myr ago.

If dark matter exists in clusters of galaxies, then during the collision of two
clusters the hot X-ray emitting gas of the clusters made of baryons is slowed by a
drag force, whereas the collisionless dark matter and the galaxies made of ordinary
matter will not be slowed down by the impact of the clusters, producing the observed
separation of the dark matter and normal matter in galaxies from the normal matter
associated with the X-ray gas. The mass of the X-ray emitting gas is at least 7 times
larger than the ordinary matter of the galaxies, so that in Einstein’s and Newton’s
gravity theories additional dominant dark matter is required to fit the interacting
cluster data. However, as we shall see in the following, MOG predicts a length
dependent scaling of gravity such that the gravitational field at the positions of the
ordinary galaxy matter is increased in strength, predicting the peaking of the weak
lensing without dark matter.

We shall simplify our analysis of the merging clusters by assuming that the ob-
served interacting cluster is approximately spherically symmetric. The total surface
density of the interacting cluster is given by

N(R) = Ex(R) + Xa(R), (19)

where Y x and Y denote the X-ray emitting gas and galaxy surface densities, re-
spectively. The varying G(R) is given by

G(R) = Gy [1+ (1 = exp(—F/Aaws)) (1 + i )] (20)
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where st and Aquse are the coupling strength and range of the interacting cluster,
respectively, and we assume that they are constant within the interacting cluster.
The convergence field x is given by
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We choose the phenomenological models for ¥y and Xq:
ZX (R) = Aexp(_BR)> ZG = 07 (22)

where A, B and C' are constants. The model for the surface density > of the in-
teracting cluster has been chosen to reflect the data, showing that the X-ray gas
attenuates as R increases towards the edge of the merging clusters, and we have
chosen a constant value for the surface density of galaxies 5. We are required in
a realistic model to cut off the surface density ¥ at the edges of the interacting
cluster. In Fig 1., we display a calculation of k(R) with agust = 13, Aauss = 200 kpc,
A = B = 0.6, C = 0.1 in appropriate units and the numerical factor 47GD/c?* is
scaled to unity in appropriate units. The choices of the parameters agust and Acjust
agree approximately with the previously published values of these parameter used
to fit mass profiles of X-ray clusters [H].
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Figure 1.

Shown is a calculation of the convergence field k(R) for a spherically symmetric
model of the interacting cluster. The MOG result is displayed by a black curve
and the Einstein (Newtonian) result by a red curve. The vertical axis is displayed
with the constant numerical factor 4wGyD/c? scaled to unity in appropriate units
and the horizontal axis R = 100 x kpc.



We see that the MOG prediction for the gravitational convergence field x(R) dis-
plays the peaking of the weak lensing in the outer regions of the interacting cluster
relative to the peaking of the central off-set X-ray gas without dark matter. This
agrees qualitatively with the mass distribution peaks observed in the data for the
interacting cluster 1E0657-56 [0l [, §]. The predicted x(R) based on Einstein (New-
tonian) lensing without dark matter cannot fit the observed distribution of surface
density. This means that MOG can describe the merging clusters without assuming
the existence of undetected exotic dark matter.

4 Conclusions

The gravitational potential determined from the STVG MOG [I] has a unique sig-
nature for a merging of galaxy clusters. Other alternative models based on Mil-
grom’s MOND [I2] and Bekenstein’s and Sander’s relativistic generalizations of
MOND [I3, T4, [T5] have been studied by several authors [9, [0, [[T]. In a MOND-type
model and in the Bekenstein and Sanders models, the MOND critical acceleration
ap is expected to satisfy a > ag ~ 1.2 x 1078 cms™2 inside the interacting cluster,
while the MOND modified acceleration law comes into play outside the interacting
cluster for a < ag. It therefore seems difficult to understand how the lack of peaking
of the off-set central X-ray gas cloud compared to the more pronounced peaking of
the outer galaxy mass distribution can be explained by a MOND-like model. In view
of this, MOND-like models would be expected to predict an Einstein (Newtonian)
gravitational field for the weak lensing of the interacting cluster, requiring dark mat-
ter to fit the data. It is already known that MOND does not fit the mass profiles
of X-ray clusters without dark matter [T4), 15], whereas MOG has been shown to
fit a large number of mass profiles of X-ray clusters without dark matter [4]. With
the accumulation of more data for 1E0657-56, this interacting cluster could distin-
guish MOG from other alternative gravity theories which purport to fit galaxy and
clusters of galaxies data without dark matter. A more detailed study of the MOG
prediction for the interacting cluster based on a fitting to published data will be
considered in a future publication.

We learn from the results presented here that one should not draw premature
conclusions about the existence of dark matter without a careful analysis of alterna-
tive gravity theories and their predictions for galaxy lensing and cluster lensing, in
particular, for the interacting cluster 1E0657-56.
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